1) Sabendo que o primeiro termo de uma PA é 5 e a razão é 11, calcule o 13º termo:
a1=5
r=11
a13=?
- Para calcular vamos utilizar a fórmula do termo geral [an = a1 + (n-1)*r], onde an será o a13, portanto n=13. Agora, substituindo:
a13 = 5 + (13 - 1).11
a13 = 5 + (12).11
a13 = 5 + 132
a13 = 137
2) Dados a5 = 100 e r = 10, calcule o primeiro termo:
a5 = a1 + (5 - 1).r
100 = a1 + (5 - 1).10
100 = a1 + 40
100 - 40 = a1
a1 = 60
3) Sendo a7 = 21 e a9 = 27, calcule o valor da razão:
a7 = a1 + (7 - 1).r Substituindo pelos valores 21 = a1 + 6r
a9 = a1 + (9 - 1).r Substituindo pelos valores 27 = a1 + 8r
Note que temos duas incógnitas (a1 e r) e duas equações, ou seja, temos um sistema de equações. Vamos isolar o a1 na primeira equação e substituir na segunda:
a1 = 21 - 6r
Agora, substituindo na segunda:
27 = (21 - 6r) + 8r
27 = 21 + 2r
27 - 21 = 2r
6 = 2r
6/2 = r
r = 3
4) (UFRGS) Em uma Progressão Aritmética, em que o primeiro termo é 23 e a razão é -6, a posição ocupada pelo elemento -13 é:
(A) 8a
(B) 7a
(C) 6a
(D) 5a
(E) 4a
- informações do problema:
a1 = 23 r = -6 an = -13 n=?
- Substituindo na fórmula do termo geral:
an = a1 + (n-1)r
-13 = 23 + (n - 1).(-6)
-13 - 23 = -6n + 6
-36 - 6 = -6n
-42 = -6n Vamos multiplicar os dois lados por (-1)
6n = 42
n = 42/6
n = 7 Resposta certa letra "B
5) (UCS) O valor de x para que a sequência (2x, x+1, 3x) seja uma PA é:
(A) 1/2
(B) 2/3
(C) 3
(D) 1/2
(E) 2
- Informações:
a1= 2x
a2= x+1
a3= 3x
- Neste exercício devemos utilizar a propriedade de uma PA qualquer. Sabemos que o termo da frente é igual ao termo de trás mais a razão. Ou seja:
a2 = a1 + r isolando "r" r = a2 - a1
a3 = a2 + r isolando "r" r = a3 - a2
- Como temos "r" igualado nas duas equações, podes igualar uma a outra, ou seja:
a2 - a1 = a3 - a2
- Agora, substituindo pelos valores dados no enunciado:
(x + 1) - (2x) = (3x) - (x + 1)
x + 1 - 2x = 3x - x - 1
x - 2x - 3x + x= -1 - 1
-3x = -2 Multiplicando ambos os lados por (-1)
3x = 2
x = 2/3 Resposta certa letra "B"
http://www.tutorbrasil.com.br/estudo_matematica_online/progressoes/progressao_aritmetica/progressao_aritmetica_03_termo_geral_exercicios_resolvidos.php
01. (FATES) Considere as seguintes sequências de números:
I. 3, 7, 11, …
II. 2, 6, 18, …
III. 2, 5, 10, 17, …
O número que continua cada uma das sequências na ordem dada deve ser respectivamente:
a) 15, 36 e 24
b) 15, 54 e 24
c) 15, 54 e 26
d) 17, 54 e 26
e) 17, 72 e 26
02. (FEFISA) Se numa sequência temos que f(1) = 3 e f(n + 1) = 2 . f(n) + 1, então o valor de f(4) é:
a) 4
b) 7
c) 15
d) 31
e) 42
03. Determinar o primeiro termo de uma progressão aritmética de razão -5 e décimo termo igual a 12.
04. Em uma progressão aritmética sabe-se que a4 = 12 e a9 = 27. Calcular a5.
05. Interpolar 10 meios aritméticos entre 2 e 57 e escrever a P. A. correspondente com primeiro termo igual a 2.
06. Determinar x tal que 2x – 3; 2x + 1; 3x + 1 sejam três números em P. A. nesta ordem.
07. Em uma P. A. são dados a1 = 2, r = 3 e Sn = 57. Calcular an e n.
08. (OSEC) A soma dos dez primeiros termos de uma P. A. de primeiro termo 1,87 e de razão 0,004 é:
a) 18,88
b) 9,5644
c) 9,5674
d) 18,9
e) 21,3
09. (UNICID) A soma dos múltiplos de 5 entre 100 e 2000, isto é, 105 + 110 + 115 + … + 1995, vale:
a) 5870
b) 12985
c) 2100 . 399
d) 2100 . 379
e) 1050 . 379
10. (UE – PONTA GROSSA) A soma dos termos de P. A. é dada por Sn = n2 – n, n = 1, 2, 3, … Então o 10° termo da P. A vale:
a) 18
b) 90
c) 8
d) 100
e) 9
Respostas:
01. C
02. D
03. a1 = 57
04. a5 = 15
05. (2; 7; 12; 17; …)
06. x = 4
07. n = 6 e a6 = 17
08. A
09. E
10. A
http://www.coladaweb.com/exercicios-resolvidos/exercicios-resolvidos-de-matematica/progressao-aritmetica
Nenhum comentário:
Postar um comentário