Pesquisar este blog

sábado, 10 de janeiro de 2015

Regra de Três



Regra de três simples
Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos.
        Passos utilizados numa regra de três simples:

        1º) Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência.
        2º) Identificar se as grandezas são diretamente ou inversamente proporcionais.
        3º) Montar a proporção e resolver a equação.
        Exemplos:
        1) Com uma área  de absorção de raios solares de 1,2m2, uma lancha com motor movido a energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5m2, qual será a energia produzida?
        Solução: montando a tabela:
Área (m2)Energia (Wh)
1,2400
1,5x
        Identificação do tipo de relação:
regra3_1.gif (1652 bytes)
        Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).
        Observe que: Aumentando a área de absorção, a energia solar aumenta.
        Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Assim sendo, colocamos uma outra seta no mesmo sentido (para baixo) na 1ª coluna. Montando a proporção e resolvendo a equação temos:

regra3_2.gif (1724 bytes)regra3_3.gif (1426 bytes)
Logo, a energia produzida será de 500 watts por hora.

        2) Um trem, deslocando-se a uma velocidade média de 400Km/h, faz um determinado percurso em 3 horas. Em quanto tempo faria esse mesmo percurso, se a velocidade utilizada fosse de 480km/h?
        Solução: montando a tabela:
Velocidade (Km/h)Tempo (h)
4003
480x
        Identificação do tipo de relação:
regra3_4.gif (1814 bytes)
        Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).
        Observe que: Aumentando a velocidade, o tempo do percurso diminui.
        Como as palavras são contrárias (aumentando - diminui), podemos afirmar que as grandezas são inversamente proporcionais. Assim sendo, colocamos uma outra seta no sentido contrário (para cima) na 1ª coluna. Montando a proporção e resolvendo a equação temos:

regra3_5.gif (1857 bytes)regra3_6.gif (2058 bytes)
Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30 minutos.

        3) Bianca comprou 3 camisetas e pagou R$120,00. Quanto ela pagaria se comprasse 5 camisetas do mesmo tipo e preço?
        Solução: montando a tabela:
CamisetasPreço (R$)
3120
5x
        Observe que: Aumentando o número de camisetas, o preço aumenta.
        Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Montando a proporção e resolvendo a equação temos:

regra3_7.gif (1325 bytes)
Logo, a Bianca pagaria R$200,00 pelas 5 camisetas.

        4) Uma equipe de operários, trabalhando 8 horas por dia, realizou determinada obra em 20 dias. Se o número de horas de serviço for reduzido para 5 horas, em que prazo essa equipe fará o mesmo trabalho?
        Solução: montando a tabela:
Horas por diaPrazo para término (dias)
820
5x
        Observe que: Diminuindo o número de horas trabalhadas por dia, o prazo para término aumenta.
        Como as palavras são contrárias (diminuindo - aumenta), podemos afirmar que as grandezas são inversamente proporcionais. Montando a proporção e resolvendo a equação temos:

regra3_8.gif (1931 bytes)


Regra de três composta
A regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais.
        Exemplos:
        1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m3?
        Solução: montando a tabela, colocando em cada coluna as grandezas de mesma espécie e, em cada linha, as grandezas de espécies diferentes que se correspondem:
HorasCaminhõesVolume
820160
5x125
        Identificação dos tipos de relação:
        Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).

regra3_9.gif (1192 bytes)
        A seguir, devemos comparar cada grandeza com aquela onde está o x.
        Observe que:
        Aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação éinversamente proporcional (seta para cima na 1ª coluna).

        Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto a relação é diretamente proporcional (seta para baixo na 3ª coluna). Devemos igualar a razão que contém o termo x com o produto das outras razões de acordo com o sentido das setas.
Montando a proporção e resolvendo a equação temos:
regra3_10.gif (1291 bytes)regra3_11.gif (2147 bytes)
Logo, serão necessários 25 caminhões.

        2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias?
        Solução: montando a tabela:
HomensCarrinhosDias
8205
4x16
        Observe que:
        Aumentando o número de homens, a produção de carrinhos aumenta. Portanto a relação é diretamente proporcional(não precisamos inverter a razão).

        Aumentando o número de dias, a produção de carrinhos aumenta. Portanto a relação também é diretamente proporcional (não precisamos inverter a razão). Devemos igualar a razão que contém o termo x com o produto das outras razões.
Montando a proporção e resolvendo a equação temos:
regra3_12.gif (1320 bytes)
Logo, serão montados 32 carrinhos.

        3) Dois pedreiros levam 9 dias para construir um muro com 2m de altura. Trabalhando 3 pedreiros e aumentando a altura para 4m, qual será o tempo necessário para completar esse muro?
        Inicialmente colocamos uma seta para baixo na coluna que contém o x. Depois colocam-se flechas concordantes para as grandezas diretamente proporcionais com a incógnita e discordantes para as inversamente proporcionais, como mostra a figura abaixo:
regra3_13.gif (1894 bytes)
Montando a proporção e resolvendo a equação temos:
regra3_14.gif (2375 bytes)
Logo, para completar o muro serão necessários 12 dias.

    Exercícios complementares
    Agora chegou a sua vez de tentar. Pratique tentando fazer esses exercícios:
    1) Três torneiras enchem uma piscina em 10 horas. Quantas horas levarão 10 torneiras para encher 2 piscinas?  Resposta: 6 horas.
    2) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão extrair 5,6 toneladas de carvão?   Resposta: 35 dias.
    3) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 300m. Quanto tempo levará uma turma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 225m?  Resposta: 15 dias.
    4) Um caminhoneiro entrega uma carga em um mês, viajando 8 horas por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele deveria viajar para entregar essa carga em 20 dias, a uma velocidade média de 60 km/h?  Resposta: 10 horas por dia.
    5) Com uma certa quantidade de fio, uma fábrica produz 5400m de tecido com 90cm de largura em 50 minutos. Quantos metros de tecido, com 1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos?  Resposta: 2025 metros.




http://www.somatematica.com.br/fundam/regra3c.php




Nenhum comentário:

Postar um comentário