Pesquisar este blog

quinta-feira, 23 de abril de 2015

Noções de Cartografia



INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE
   Diretoria de Geociências - DGC

   Departamento de Cartografia - DECAR
 
Av. Brasil, 15.671 - Bloco III B - Térreo - Parada de Lucas - Rio de Janeiro - RJ
Tel.: 391-7788 ramal 248 - CEP 21.241-051
© IBGE





Noções Básicas de Cartografia
I - INTRODUÇÃO
1 - HISTÓRICO
Mesmo considerando todos os avanços científicos e tecnológicos produzidos pelo homem através dos tempos, é possível, nos dias de hoje, entender a condição de perplexidade de nossos ancestrais, no começo dos dias, diante da complexidade do mundo a sua volta. Podemos também intuir de que maneira surgiu no homem a necessidade de conhecer o mundo que ele habitava.
O simples deslocamento de um ponto a outro na superfície de nosso planeta, já justifica a necessidade de se visualizar de alguma forma as características físicas do "mundo". É fácil imaginarmos alguns dos questionamentos que surgiram nas mentes de nossos ancestrais, por exemplo: como orientar nossos deslocamentos? Qual a forma do planeta? etc..
O conceito de Cartografia tem suas origens intimamente ligadas às inquietações que sempre se manifestaram no ser humano, no tocante a conhecer o mundo que ele habita.
O vocábulo CARTOGRAFIA, etmologicamente - descrição de cartas, foi introduzido em 1839, pelo segundo Visconde de Santarém - Manoel Francisco de Barros e Souza de Mesquita de Macedo Leitão, (1791 - 1856). A despeito de seu significado etmológico, a sua concepção inicial continha a idéia do traçado de mapas. No primeiro estágio da evolução o vocábulo passou a significar a arte do traçado de mapas, para em seguida, conter a ciência, a técnica e a arte de representar a superfície terrestre.
Em 1949 a Organização das Nações Unidas já reconhecia a importância da Cartografia através da seguinte assertiva, lavrada em Atas e Anais:
"CARTOGRAFIA - no sentido lato da palavra não é apenas uma das ferramentas básicas do desenvolvimento econômico, mas é a primeira ferramenta a ser usada antes que outras ferramentas possam ser postas em trabalho."(1)
(1) ONU, Departament of Social Affair. MODERN CARTOGRAPHY - BASE MAPS FOR WORLDS NEEDS. Lake Success.
O conceito da Cartografia, hoje aceito sem maiores contestações, foi estabelecido em 1966 pela Associação Cartográfica Internacional (ACI), e posteriormente, ratificado pela UNESCO, no mesmo ano: "A Cartografia apresenta-se como o conjunto de estudos e operações científicas, técnicas e artísticas que, tendo por base os resultados de observações diretas ou da análise de documentação, se voltam para a elaboração de mapas, cartas e outras formas de expressão ou representação de objetos, elementos, fenômenos e ambientes físicos e socioeconômicos, bem como a sua utilização."
O processo cartográfico, partindo da coleta de dados, envolve estudo, análise, composição e representação de observações, de fatos, fenômenos e dados pertinentes a diversos campos científicos associados a superfície terrestre.
2 - FORMA DA TERRA
A forma de nosso planeta (formato e suas dimensões) é um tema que vem sendo pesquisado ao longo dos anos em várias partes do mundo. Muitas foram as interpretações e conceitos desenvolvidos para definir qual seria a forma da Terra. Pitágoras em 528 a.C. introduziu o conceito de forma esférica para o planeta, e a partir daí sucessivas teorias foram desenvolvidas até alcançarmos o conceito que é hoje bem aceito no meio científico internacional.
A superfície terrestre sofre freqüentes alterações devido à natureza (movimentos tectônicos, condições climáticas, erosão, etc.) e à ação do homem, portanto, não serve para definir forma sistemática da Terra.
A fim de simplificar o cálculo de coordenadas da superfície terrestre foram adotadas algumas superfície matemática simples. Uma primeira aproximação é a esfera achatada nos pólos.
Segundo o conceito introduzido pelo matemático alemão CARL FRIEDRICH GAUSS (1777-1855), a forma do planeta, é o GEÓIDE (Figura 1.2) que corresponde à superfície do nível médio do mar homogêneo (ausência de correntezas, ventos, variação de densidade da água, etc.) supostamente prolongado por sob continentes. Essa superfície se deve, principalmente, às forças de atração (gravidade) e força centrífuga (rotação da Terra).
Os diferentes materiais que compõem a superfície terrestre possuem diferentes densidades, fazendo com que a força gravitacional atue com maior ou menor intensidade em locais diferentes.
As águas do oceano procuram uma situação de equilíbrio, ajustando-se às forças que atuam sobre elas, inclusive no seu suposto prolongamento. A interação (compensação gravitacional) de forças buscando equilíbrio, faz com que o geóide tenha o mesmo potencial gravimétrico em todos os pontos de sua superfície.
É preciso buscar um modelo mais simples para representar o nosso planeta. Para contornar o problema que acabamos de abordar lançou-se mão de uma Figura geométrica chamada ELIPSE que ao girar em torno do seu eixo menor forma um volume, o ELIPSÓIDE DE REVOLUÇÃO, achatado no pólos (Figura 1.1). Assim, o elipsóide é a superfície de referência utilizada nos cálculos que fornecem subsídios para a elaboração de uma representação cartográfica.
Muitos foram os intentos realizados para calcular as dimensões do elipsóide de revolução que mais se aproxima da forma real da Terra, e muitos foram os resultados obtidos. Em geral, cada país ou grupo de países adotou um elipsóide como referência para os trabalhos geodésicos e topográficos, que mais se aproximasse do geóide na região considerada.
A forma e tamanho de um elipsóide, bem como sua posição relativa ao geóide define um sistema geodésico (também designado por datum geodésico). No caso brasileiro adota-se o Sistema Geodésico Sul Americano - SAD 69, com as seguintes características:
Elipsóide de referência - UGGI 67 (isto é, o recomendado pela União Geodésica e Geofísica Internacional em 1967) definido por:
- semi-eixo maior - a: 6.378.160 m
- achatamento - f: 1/298,25
Origem das coordenadas (ou Datum planimétrico):
- estação : Vértice Chuá (MG)
- altura geoidal : 0 m
- coordenadas: Latitude: 19º 45º 41,6527’’ S
                      Longitude: 48º 06’ 04,0639" W
- azimute geodésico para o Vértice Uberaba : 271º 30’ 04,05"
O Sistema Geodésico Brasileiro (SGB) é constituido por cerca de 70.000 estações implantadas pelo IBGE em todo o Território Brasileiro, divididas em três redes:

- Planimétrica: latitude e longitude de alta precisão
- Altimétrica: altitudes de alta precisão
- Gravimétrica: valores precisos de aceleração da gravidade
Para origem das altitudes (ou Datum altimétrico ou Datum vertical) foram adotados:
Porto de Santana - correspondente ao nível médio determinado por um marégrafo instalado no Porto de Santana (AP) para referenciar a rede altimétrica do Estado do Amapá que ainda não está conectada ao restante do País.
Imbituba - idem para a estação maregráfica do porto de Imbituba (SC), utilizada como origem para toda rede altimétrica nacional à exceção do estado Amapá.
3 - LEVANTAMENTOS
Compreende-se por levantamento o conjunto de operações destinado à execução de medições para a determinação da forma e dimensões do planeta.
Dentre os diversos levantamentos necessários à descrição da superfície terrestre em suas múltiplas características, podemos destacar:
3.1 - LEVANTAMENTOS GEODÉSICOS
GEODÉSIA - "Ciência aplicada que estuda a forma, as dimensões e o campo de gravidade da Terra".
FINALIDADES - Embora a finalidade primordial da Geodésia seja cientifica, ela é empregada como estrutura básica do mapeamento e trabalhos topográficos, constituindo estes fins práticos razão de seu desenvolvimento e realização, na maioria dos países.
Os levantamentos geodésicos compreendem o conjunto de atividades dirigidas para as medições e observações que se destinam à determinação da forma e dimensões do nosso planeta (geóide e elipsóide). É a base para o estabelecimento do referencial físico e geométrico necessário ao posicionamento dos elementos que compõem a paisagem territorial.
Os levantamentos geodésicos classificam-se em três grandes grupos:
a) Levantamentos Geodésicos de Alta Precisão (Âmbito Nacional)
- Científico: Dirigido ao atendimento de programas internacionais de cunho científico e a Sistemas Geodésicos Nacionais.
- Fundamental (1ª Ordem): Pontos básicos para amarração e controle de trabalhos geodésicos e cartográficos, desnvolvido segundo especificações internacionais, constituindo o sistema único de referência.
b) Levantamentos Geodésicos de Precisão (Âmbito Nacional)
- Para áreas mais desenvolvidas (2ª ordem): Insere-se diretamente no grau de desenvolvimento socioeconômico regional. É uma densificação dos Sistemas Geodésicos Nacionais a partir da decomposição de Figura s de 1ª ordem.
- Para áreas menos desenvolvidas (3ª ordem): Dirigido às áreas remotas ou aquelas em que não se justifiquem INVESTIMENTOS imediatos.
c) Levantamentos Geodésicos para fins Topográficos (Local)
Têm características locais. Dirigem-se ao atendimento dos levantamentos no horizonte topográfico. Têm a finalidade de fornecer o apoio básico indispensável às operações topográficas de levantamento, para fins de mapeamento com base em fotogrametria
Os levantamentos irão permitir o controle horizontal e vertical através da determinação de coordenadas geodésicas e altimétricas.
3.1.1 - MÉTODOS DE LEVANTAMENTOS
3.1.1.1 - LEVANTAMENTO PLANIMÉTRICO
Dentre os levantamentos planimétricos clássicos, merecem destaque:
- Triangulação: Obtenção de Figura s geométricas a partir de triângulos formados através da medição dos ângulos subtendidos por cada vértice. Os pontos de triangulação são denominados vértices de triangulação (VVTT). É o mais antigo e utilizado processo de levantamento planimétrico.
- Trilateração: Método semelhante à triangulação e, como aquele, baseia-se em propriedades geométricas a partir de triângulos superpostos, sendo que o levantamento será efetuado através da medição dos lados.
- Poligonação: É um encadeamento de distâncias e ângulos medidos entre pontos adjacentes formando linhas poligonais ou polígonos. Partindo de uma linha formada por dois pontos conhecidos, determinam-se novos pontos, até chegar a uma linha de pontos conhecidos.
3.1.1.2 - LEVANTAMENTO ALTIMÉTRICO
Desenvolveu-se na forma de circuitos, servindo por ramais às cidades, vilas e povoados às margens das mesmas e distantes até 20 km. Os demais levantamentos estarão referenciados ao de alta precisão.
- Nivelamento Geométrico: É o método usado nos levantamentos altimétricos de alta precisão que se desenvolvem ao longo de rodovias e ferrovias. No SGB, os pontos cujas altitudes foram determinadas a partir de nivelamento geométrico são denominados referências de nível (RRNN).
- Nivelamento Trigonométrico: Baseia-se em relações trigonométricas. É menos preciso que o geométrico, fornece apoio altimétrico para os trabalhos topográficos.
- Nivelamento Barométrico: Baseia-se na relação inversamente proporcional entre pressão atmosférica e altitude. É o de mais baixa precisão, usado em regiões onde é impossível utilizar-se os métodos acima ou quando se queira maior rapidez.
3.1.1.3 - LEVANTAMENTO GRAVIMÉTRICO
A gravimetria tem por finalidade o estudo do campo gravitacional terrestre, possibilitando, a partir dos seus resultados, aplicações na área da Geociência como por exemplo, a determinação da Figura e dimensões da Terra, a investigação da crosta terrestre e a prospecção de recursos minerais.
As especificações e normas gerais abordam as técnicas de medições gravimétricas vinculadas às determinações relativas com uso de gravímetros estáticos.
À semelhança dos levantamentos planimétricos e altimétricos, os gravimétricos são desdobrados em: Alta precisão, precisão e para fins de detalhamento.
Matematicamente, esses levantamentos são bastante similares ao nivelamento geométrico, medindo-se diferenças de aceleração da gravidade entre pontos sucessivos.
3.2 - LEVANTAMENTOS TOPOGRÁFICOS
São operações através das quais se realizam medições, com a finalidade de se determinar a posição relativa de pontos da superfície da Terra no horizonte tropográfico (correspondente a um círculo de raio 10 km).
Figura 1.3 - Maior parte da rede nacional de triangulação executada pelo IBGE

Figura 1.4 - Rede de nivelamento geodésico executado pelo IBGE
3.3 - POSICIONAMENTO TRIDIMENSIONAL POR GPS
Na coleta de dados de campo, as técnicas geodésicas e topográficas para determinações de ângulos e distâncias utilizadas para a obtenção de coordenadas bi e/ou tri-imensionais sobre a superfície terrestre, através de instrumentos ópticos e mecânicos tornaram-se obsoletos, sendo mais utilizada na locação de obras de engenharia civil e de instalações industriais. Posteriormente, sistemas eletrônicos de determinações de distâncias por mira "laser" ou infravermelhas determinaram uma grande evolução.
A geodésia por satélites baseados em Radar (NNSS), em frequência de rádio muito altas (bandas de microondas) foi desenvolvido pela Marinha dos Estados Unidos com a finalidade básica da navegação e posicionamento das belonaves americanas sobre superfície, em meados dos anos 60. Surgiu através de pesquisas sobre distanciômetros durante a 2ª Grande Guerra e foi amplamente utilizado até o início de 1993.
Atualmente, o Sistema de Posicionamento Global (GPS) com a constelação NAVSTAR ("Navigation System With Timing And Ranging"), totalmente completa e operacional, ocupa o primeiro lugar entre os sistemas e métodos utilizados pela topografia, geodésia, aerofotogrametria, navegação aérea e marítima e quase todas as aplicações em geoprocessamento que envolvam dados de campo.
- O GPS
Em 1978 foi iniciado o rastreamento dos primeiros satélites NAVSTAR, dando origem ao GPS como é hoje conhecido. No entanto, somente na segunda metade da década de 80 é que o GPS se tornou popular, depois que o Sistema foi aberto para uso civil e de outros países, já que o projeto foi desenvolvido para aplicações militares, e também em consequência do avanço tecnológico no campo da microinformática, permitindo aos fabricantes de rastreadores produzir receptores GPS que processassem no próprio receptor os códigos de sinais recebidos do rastreador.
- Referência
O sistema geodésico adotado para referência é o World Geodetic System de 1984 (WGS-84). Isto acarreta que os resultados dos posicionamentos realizados com o GPS referem-se a esse sistema geodésico, devendo ser transformados para o sistema SAD-69, adotado no Brasil, através de metodologia própria. Ressalta-se que o GPS fornece resultados de altitude elipsoidal, tornando obrigatório o emprego do Mapa Geoidal do Brasil, produzido pelo IBGE, para a obtenção de altitudes referenciadas ao geóide (nível médio dos mares).
O Sistema GPS subdivide-se em três segmentos: espacial, de controle e do usuário.
- Segmento Espacial (A Constelação GPS)
O segmento espacial do GPS prevê cobertura mundial de tal forma que em qualquer parte do globo, incluindo os pólos, existam pelo menos 4 satélites visíveis em relação ao horizonte, 24 horas ao dia. Em algumas regiões da Terra é possível a obtenção de 8 ou mais satélites visíveis ao mesmo tempo.
A constelação de satélites GPS, é composta por 24 satélites ativos que circulam a Terra em órbitas elípticas (quase circulares). A vida útil esperada de cada satélite é de cerca de 6 anos, mas existem satélites em órbita com mais de 10 anos e ainda em perfeito funcionamento.
- Segmento de Controle (Sistemas de Controle)
Compreende o Sistema de Controle Operacional, o qual consiste de uma estação de controle mestra, estações de monitoramento mundial e estações de controle de campo.
- Estação mestra: Localiza-se na base FALCON da USAF em Colorado Springs - Colorado. Esta estação, além de monitorar os satélites que passam pelos EUA, reúne os dados das estações de monitoramento e de campo, processando-os e gerando os dados que efetivamente serão transmitidos aos satélites.
- Estações de monitoramento: Rastreiam continuamente todos os satélites da constelação NAVSTAR, calculando suas posições a cada 1,5 segundo. Através de dados meteorológicos, modelam os erros de refração e calculam suas correções, transmitidas aos satélites e através destes, para os receptores de todo o mundo.
Existem quatro estações, além da mestra: - Hawai;
                                                             - Ilha de Assención, no Atlântico sul;
                                                             - Diego Garcia, no Oceano Índico;
                                                             - Kwajalein, no Pacífico.
- Estações de campo: Estas estações são formadas por uma rede de antenas de rastreamento dos satélites NAVSTAR. Tem a finalidade de ajustar os tempos de passagem dos satélites, sincronizando-os com o tempo da estação mestra.
- Segmento do Usuário
O segmento dos usuários está associado às aplicações do sistema. Refere-se a tudo que se relaciona com a comunidade usuária, os diversos tipos de receptores e os métodos de posicionamento por eles utilizados.
- Métodos de Posicionamento
- Absoluto (Ponto isolado): Este método fornece uma precisão de 100 metros.
- Diferencial: As posições absolutas, obtidas com um receptor móvel, são corrigidas por um outro receptor fixo, estacionado num ponto de coordenadas conhecidas. Esses receptores comunicam-se através de link de rádio. Precisão de 1 a 10 metros.
- Relativo: É o mais preciso. Utilizado para aplicações geodésicas de precisão. Dependendo da técnica utilizada (estático, cinemático ou dinâmico), é possível obter-se uma precisão de até 1 ppm.
Para aplicações científicas, por exemplo, o estabelecimento da Rede Brasileira de Monitoramento Contínuo - RBMC, essa precisão é de 0,1 ppm.
3.4 - AEROLEVANTAMENTOS
Baseados na utilização de equipamentos aero ou espacialmente transportados (câmaras fotográficas e métricas, sensores), prestam-se à descrição geométrica da superfície topográfica, em relação a uma determinada superfície de referência.
A legislação brasileira amplia o campo das atividades de aerolevantamento à interpretação ou tradução, sob qualquer forma, dos dados e observações afetuadas.
Aerolevantamento é definido como sendo o conjunto de operações aéreas e/ou espaciais de medição, computação e registro de dados do terreno, com o emprego de sensores e/ou equipamentos adequados, bem como a interpretação dos dados levantados ou sua tradução sob qualquer forma.
O aerolevantamento engloba as atividades de aerofotogrametria, aerogeofísica e sensoriamento remoto, constituindo-se das fases e operações seguintes:
1ª fase: Aquisição dos dados, constituída de operações de cobertura aérea e/ou espacial.
2ª fase: Operação relativa à interpretação ou tradução dos dados obtidos em operação aérea e/ou espacial.


Operações:

a) Processamento fotográfico de filme aéreo ou espacial e respectiva obtenção de diafilme, diapositivo, fotografia, fotoíndice e mosaico não controlado.
b) Confecção de mosaico controlado e fotocarta.
c) Confecção de ortofotografia, ortofotomosaico e ortofotocarta.
d) Interpretação e tradução cartográfica, mediante restituição estereofotogramétrica ou de imagem obtida com outro sensor remoto.
e) Processamento digital de imagem.
f) Preparo para impressão de original de restituição estereofotogramétrica ou elaborado a partir de imagem obtida com outro sensor remoto.
g) Reprodução e impressão de cartas e mapas.
Noções Básicas de Cartografia
II - REPRESENTAÇÃO CARTOGRÁFICA
1 - TIPOS DE REPRESENTAÇÃO
1.1 - POR TRAÇO
GLOBO - representação cartográfica sobre uma superfície esférica, em escala pequena, dos aspectos naturais e artificiais de uma figura planetária, com finalidade cultural e ilustrativa.
MAPA (Características):
- representação plana;
- geralmente em escala pequena;
- área delimitada por acidentes naturais (bacias, planaltos, chapadas, etc.), político-administrativos;
- destinação a fins temáticos, culturais ou ilustrativos. 
A partir dessas características pode-se generalizar o conceito:

" Mapa é a representação no plano, normalmente em escala pequena, dos aspectos geográficos, naturais, culturais e artificiais de uma área tomada na superfície de uma Figura planetária, delimitada por elementos físicos, político-administrativos, destinada aos mais variados usos, temáticos, culturais e ilustrativos."
CARTA (Características):
- representação plana;
- escala média ou grande;
- desdobramento em folhas articuladas de maneira sistemática;
- limites das folhas constituídos por linhas convencionais, destinada à avaliação precisa de direções, distâncias e localização de pontos, áreas e detalhes.
Da mesma forma que da conceituação de mapa, pode-se generalizar:

" Carta é a representação no plano, em escala média ou grande, dos aspectos artificiais e naturais de uma área tomada de uma superfície planetária, subdividida em folhas delimitadas por linhas convencionais - paralelos e meridianos - com a finalidade de possibilitar a avaliação de pormenores, com grau de precisão compatível com a escala."
PLANTA - a planta é um caso particular de carta. A representação se restringe a uma área muito limitada e a escala é grande, consequentemente o nº de detalhes é bem maior.

"Carta que representa uma área de extensão suficientemente restrita para que a sua curvatura não precise ser levada em consideração, e que, em consequência, a escala possa ser considerada constante."
1.2 - POR IMAGEM
MOSAICO - é o conjunto de fotos de uma determinada área, recortadas e montadas técnica e artísticamente, de forma a dar a impressão de que todo o conjunto é uma única fotografia. Classifica-se em:
- controlado - é obtido a partir de fotografias aéreas submetidas a processos específicos de correção de tal forma que a imagem resultante corresponda exatamente a imagem no instante da tomada da foto. Essas fotos são então montadas sobre uma prancha, onde se encontram plotados um conjunto de pontos que servirão de controle à precisão do mosaico. Os pontos lançados na prancha tem que ter o correspondente na imagem. Esse mosaico é de alta precisão.
- não-controlado - é preparado simplesmente através do ajuste de detalhes de fotografias adjacentes. Não existe controle de terreno e as fotografias não são corrigidas. Esse tipo de mosaico é de montagem rápida, mas não possui nenhuma precisão. Para alguns tipos de trabalho ele satisfaz plenamente.
- semicontrolado - são montados combinando-se características do mosaico controlado e do não controlado. Por exemplo, usando-se controle do terreno com fotos não corrigidas; ou fotos corrigidas, mas sem pontos de controle.
FOTOCARTA - é um mosaico controlado, sobre o qual é realizado um tratamento cartográfico (planimétrico).
ORTOFOTOCARTA - é uma ortofotografia - fotografia resultante da transformação de uma foto original, que é uma perspectiva central do terreno, em uma projeção ortogonal sobre um plano - complementada por símbolos, linhas e georreferenciada, com ou sem legenda, podendo conter informações planimétricas.
ORTOFOTOMAPA - é o conjunto de várias ortofotocartas adjacentes de uma determinada região.
FOTOÍNDICE - montagem por superposição das fotografias, geralmente em escala reduzida. É a primeira imagem cartográfica da região. O fotoíndice é insumo necessário para controle de qualidade de aerolevantamentos utilizados na produção de cartas através do método fotogramétrico. Normalmente a escala do fotoíndice é reduzida de 3 a 4 vezes em relação a escala de vôo.
CARTA IMAGEM - Imagem referenciada a partir de pontos identificáveis e com coordenadas conhecidas, superposta por reticulado da projeção, podendo conter simbologia e toponímia.
2 - ESCALA
2.1 - INTRODUÇÃO
Uma carta ou mapa é a representação convencional ou digital da configuração da superfície topográfica.
Esta representação consiste em projetarmos esta superfície, com os detalhes nela existentes, sobre um plano horizontal ou em arquivos digitais.
Os detalhes representados podem ser:
- Naturais: São os elementos existentes na natureza como os rios, mares, lagos, montanhas, serras, etc.
- Artificiais: São os elementos criados pelo homem como: represas, estradas, pontes, edificações, etc.
Uma carta ou mapa, dependendo dos seus objetivos, só estará completa se trouxer esses elementos devidamente representados.
Esta representação gera dois problemas:
1º) A necessidade de reduzir as proporções dos acidentes à representar, a fim de tornar possível a representação dos mesmos em um espaço limitado.
Essa proporção é chamada de ESCALA
2º) Determinados acidentes, dependendo da escala, não permitem uma redução acentuada, pois tornar-se-iam imperceptíveis, no entanto são acidentes que por usa importância devem ser representados nos documentos cartográficos
A solução é a utilização de símbolos cartográficos.
2.2 - DEFINIÇÃO
Escala é a relação entre a medida de um objeto ou lugar representado no papel e sua medida real.
Duas figuras semelhantes têm ângulos iguais dois a dois e lados homólogos proporcionais.
Verifica-se portanto, que será sempre possível, através do desenho geométrico obter-se figuras semelhantes às do terreno.
Sejam:

D = um comprimento tomado no terreno, que denominar-se-á distância real natural.

d = um comprimento homólogo no desenho, denominado distância prática.
Como as linhas do terreno e as do desenho são homólogas, o desenho que representa o terreno é uma Figura semelhante a dele, logo, a razão ou relação de semelhança é a seguinte:

D
A esta relação denomina-se ESCALA.
Assim:
Escala é definida como a relação existente entre as dimensões das linhas de um desenho e as suas homólogas.
A relação d/D pode ser maior, igual ou menor que a unidade, dando lugar à classificação das escalas quanto a sua natureza, em três categorias:
- Na 1ª, ter-se-á d > D
- Na 2ª, ter-se-á d = D
- Na 3ª categoria, que é a usada em Cartografia, a distância gráfica é menor que a real, ou seja, d < D.
É a escala de projeção menor, empregada para reduções, em que as dimensões no desenho são menores que as naturais ou do modelo.
2.3 - ESCALA NUMÉRICA
Indica a relação entre os comprimentos de uma linha na carta e o correspondente comprimento no terreno, em forma de fração com a unidade para numerador.
 
Sendo:
E = escala
N = denominador da escala
d = distância medida na carta
D = distância real (no terreno)
As escalas mais comuns têm para numerador a unidade e para denominador, um múltiplo de 10.
Isto significa que 1cm na carta corresponde a 25.000 cm ou 250 m, no terreno.
OBS: Uma escala é tanto maior quanto menor for o denominador.
Ex: 1:50.000 é maior que 1:100.000
2.3.1 - PRECISÃO GRÁFICA
É a menor grandeza medida no terreno, capaz de ser representada em desenho na mencionada Escala.
A experiência demonstrou que o menor comprimento gráfico que se pode representar em um desenho é de 1/5 de milímetro ou 0,2 mm, sendo este o erro admissível.
Fixado esse limite prático, pode-se determinar o erro tolerável nas medições cujo desenho deve ser feito em determinada escala. O erro de medição permitido será calculado da seguinte forma:
O erro tolerável, portanto, varia na razão direta do denominador da escala e inversa da escala, ou seja, quanto menor for a escala, maior será o erro admissível.
Os acidentes cujas dimensões forem menores que os valores dos erros de tolerância, não serão representados graficamente. Em muitos casos é necessário utilizar-se convenções cartográficas, cujos símbolos irão ocupar no desenho, dimensões independentes da escala.
2.3.2 - ESCOLHA DE ESCALAS
Considerando uma região da superfície da Terra que se queira mapear e que possua muitos acidentes de 10m de extensão, a menor escala que se deve adotar para que esses acidentes tenham representação será:
A escala adotada deverá ser igual ou maior que l:50.000
Na escala 1:50.000, o erro prático (0,2 mm ou 1/5 mm) corresponde a 10 m no terreno. Verifica-se então que multiplicando 10 x 5.000 encontrar-se-á 50.000, ou seja, o denominador da escala mínima para que os acidentes com 10m de extensão possam ser representadas.
2.4 - ESCALA GRÁFICA
É a representação gráfica de várias distâncias do terreno sobre uma linha reta graduada.
É constituída de um segmento à direita da referência zero, conhecida como escala primária.
Consiste também de um segmento à esquerda da origem denominada de Talão ou escala de fracionamento, que é dividido em sub-múltiplos da unidade escolhida graduadas da direita para a esquerda.
A Escala Gráfica nos permite realizar as transformações de dimensões gráficas em dimensões reais sem efetuarmos cálculos. Para sua construção, entretanto, torna-se necessário o emprego da escala numérica.
O seu emprego consiste nas seguintes operações:
1º) Tomamos na carta a distância que pretendemos medir (pode-se usar um compasso).
2º) Transportamos essa distância para a Escala Gráfica.
3º) Lemos o resultado obtido.
Muitas vezes, durante o trancorrer de alguns trabalhos cartográficos, faz-se necessário unir cartas ou mapas em escalas diferentes a fim de compatibiliza-los em um único produto. Para isso é necessário reduzir alguns e ampliar outros.
Para transformação de escala existem alguns métodos:
- Quadriculado
- Triângulos semelhantes
- Pantógrafo: Paralelograma articulado tendo em um dos pólos uma ponta seca e no outro um lápis, o qual vai traçar a redução ou ampliação do detalhe que percorremos com a ponta seca.
- Fotocartográfico: Através de uma câmara fotogramétrica de precisão, na qual podemos efetuar regulagens que permitem uma redução ou ampliação em proporções rigorosas. Tem como vantagem a precisão e rapidez.
- Digital: por ampliação ou redução em meio digital diretamente.
Como em cartografia trabalha-se com a maior precisão possível, só os métodos fotocartográfico e digital devem ser utilizados, ressaltando que a ampliação é muito mais susceptível de erro do que a redução, no entanto reduções grandes poderão gerar a fusão de linhas e demais componentes de uma carta (coalescência) que deverão ser retiradas.
A escala numérica refere-se a medidas lineares. Ela indica quantas vezes foi ampliada ou reduzida uma distância.
Quando nos referimos à superfície usamos a escala de área, podendo indicar quantas vezes foi ampliada ou reduzida uma área.
Enquanto a distância em uma redução linear é indicada pelo denominador da fração, a área ficará reduzida por um número de vezes igual ao quadrado do denominador dessa fração.
A confecção de uma carta exige, antes de tudo, o estabelecimento de um método, segundo o qual, a cada ponto da superfície da Terra corresponda um ponto da carta e vice-versa.
Diversos métodos podem ser empregados para se obter essa correspondência de pontos, constituindo os chamados "sistemas de projeções".
A teoria das projeções compreende o estudo dos diferentes sistemas em uso, incluindo a exposição das leis segundo as quais se obtêm as interligações dos pontos de uma superfície (Terra) com os da outra (carta).
São estudados também os processos de construção de cada tipo de projeção e sua seleção, de acordo com a finalidade em vista.
O problema básico das projeções cartográficas é a representação de uma superfície curva em um plano. Em termos práticos, o problema consiste em se representar a Terra em um plano. Como vimos, a forma de nosso planeta é representada, para fins de mapeamento, por um elipsóide (ou por uma esfera, conforme seja a aplicação desejada) que é considerada a superfície de referência a qual estão relacionados todos os elementos que desejamos representar (elementos obtidos através de determinadas tipos de levantamentos).
Podemos ainda dizer que não existe nenhuma solução perfeita para o problema, e isto pode ser rapidamente compreendido se tentarmos fazer coincidir a casca de uma laranja com a superfície plana de uma mesa. Para alcançar um contato total entre as duas superfícies, a casca de laranja teria que ser distorcida. Embora esta seja uma simplificação grosseira do problema das projeções cartográficas, ela expressa claramente a impossibilidade de uma solução perfeita (projeção livre de deformações). Poderíamos então, questionar a validade deste modelo de representação já que seria possível construir representações tridimensionais do elipsóide ou da esfera, como é o caso do globo escolar, ou ainda expressá-lo matemáticamente, como fazem os geodesistas. Em termos teóricos esta argumentação é perfeitamente válida e o desejo de se obter uma representação sobre uma superfície plana é de mera conveniência. Existem algumas razões que justificam esta postura, e as mais diretas são: o mapa plano é mais fácil de ser produzido e manuseado.
Podemos dizer que todas as representações de superfícies curvas em um plano envolvem: "extensões" ou "contrações" que resultam em distorções ou "rasgos". Diferentes técnicas de representação são aplicadas no sentido de se alcançar resultados que possuam certas propriedades favoráveis para um propósito específico.
A construção de um sistema de projeção será escolhido de maneira que a carta venha a possuir propriedades que satisfaçam as finalidades impostas pela sua utilização.
O ideal seria construir uma carta que reunisse todas as propriedades, representando uma superfície rigorosamente semelhante à superfície da Terra. Esta carta deveria possuir as seguintes propriedades:
1- Manutenção da verdadeira forma das áreas a serem representadas (conformidade).
2- Inalterabilidade das áreas (equivalência).
3- Constância das relações entre as distâncias dos pontos representados e as distâncias dos seus correspondentes (equidistância).
Essas propriedades seriam facilmente conseguidas se a superfície da Terra fosse plana ou uma superfície desenvolvível. Como tal não ocorre, torna-se impossível a construção da carta ideal, isto é, da carta que reunisse todas as condições desejadas
A solução será, portanto, construir uma carta que, sem possuir todas as condições ideais, possua aquelas que satisfaçam a determinado objetivo. Assim, é necessário ao se fixar o sistema de projeção escolhido considerar a finalidade da carta que se quer construir.
Em Resumo:
As representações cartográficas são efetuadas, na sua maioria, sobre uma superfície plana (Plano de Representação onde se desenha o mapa). O problema básico consiste em relacionar pontos da superfície terrestres ao plano de representação. Isto compreende as seguintes etapas:
1º) Adoção de um modelo matemático da terra (Geóide) simplificado. Em geral, esfera ou elipsóide de revolução;
2º) Projetar todos os elementos da superfície terrestre sobre o modelo escolhido. (Atenção: tudo o que se vê num mapa corresponde à superfície terrestre projetada sobre o nível do mar aproximadamente);
3º) Relacionar por processo projetivo ou analítico pontos do modelo matemático com o plano de representação escolhendo-se uma escala e sistema de coordenadas.
Antes de entrarmos nas técnicas de representação propriamente ditas, introduziremos alguns Sistemas de Coordenadas utilizados na representação cartográfica.
3.1.1 - CONSTRUÇÃO DO SISTEMA DE COORDENADAS
Os sistemas de coordenadas são necessários para expressar a posição de pontos sobre uma superfície, seja ela um elipsóide, esfera ou um plano. É com base em determinados sistemas de coordenadas que descrevemos geometricamente a superfície terrestre nos levantamentos referidos no capítulo I. Para o elipsóide, ou esfera, usualmente empregamos um sistema de coordenadas cartesiano e curvilíneo (PARALELOS e MERIDIANOS). Para o plano, um sistema de coordenadas cartesianas X e Y é usualmente aplicável.
Para amarrar a posição de um ponto no espaço necessitamos ainda complementar as coordenadas bidimensionais que apresentamos no parágrafo anterior, com uma terceira coordenada que é denominada ALTITUDE. A altitude de um ponto qualquer está ilustrada na fig .2.1-a, onde o primeiro tipo (h) é a distância contada a partir do geóide (que é a superfície de referência para contagem das altitudes) e o segundo tipo (H), denominado ALTITUDE GEOMÉTRICA é contada a partir da superfície do elipsóide.

Figura 2.1- Sistemas de coordenadas
3.1.2 - MERIDIANOS E PARALELOS
MERIDIANOS - São círculos máximos que, em conseqüência, cortam a TERRA em duas partes iguais de pólo a pólo. Sendo assim, todos os meridianos se cruzam entre si, em ambos os pólos. O meridiano de origem é o de GREENWICH (0º).(2)
PARALELOS - São círculos que cruzam os meridianos perpendicularmente, isto é, em ângulos retos. Apenas um é um círculo máximo, o Equador (0º). Os outros, tanto no hemisfério Norte quanto no hemisfério Sul, vão diminuindo de tamanho à proporção que se afastam do Equador, até se transformarem em cada pólo, num ponto (90º). (Figura 2.2)
a) no elipsóide de revolução
PN - Pólo Norte
PS - Pólo Sul

Figura 2.2 - Paralelos e Meridianos

(2) Meridiano Internacional de Referência, escolhido em Bonn, Alemanha, durante a Conferência Técnica das Nações Unidas para a Carta Internacional do Mundo ao milionésimo, como origem da contagem do meridiano.
LATITUDE GEOGRÁFICA ( j )
É o arco contado sobre o meridiano do lugar e que vai do Equador até o lugar considerado.
A latitude quando medida no sentido do pólo Norte é chamada Latitude Norte ou Positiva. Quando medida no sentido Sul é chamada Latitude Sul ou Negativa.
Sua variação é de: 0º a 90º N ou 0º a + 90º;
                           0º a 90º S ou 0º a - 90º
LONGITUDE GEOGRÁFICA ( l )
É o arco contado sobre o Equador e que vai de GREENWICH até o Meridiano do referido lugar.
A Longitude pode ser contada no sentido Oeste, quando é chamada LONGITUDE OESTE DE GREENWICH (W Gr.) ou NEGATIVA. Se contada no sentido Este, é chamada LONGITUDE ESTE DE GREENWICH (E Gr.) ou POSITIVA.
A Longitude varia de: 0º a 180º W Gr. ou 0º a - 180º;
                               0º a 180º E Gr. ou 0º a + 180º .

Figura 2.3 - Latitude e Longitude
LATITUDE GEODÉSICA ( j )
É o ângulo formado pela normal ao elipsóide de um determinado ponto e o plano do Equador.
LONGITUDE GEODÉSICA ( l )
É o ângulo formado pelo plano meridiano do lugar e o plano meridiano tomado como origem (GREENWICH). (Figura 2.1.a)
a) Geométricas - baseiam-se em princípios geométricos projetivos. Podem ser obtidos pela interseção, sobre a superfície de projeção, do feixe de retas que passa por pontos da superfície de referência partindo de um centro perspectivo (ponto de vista).
b) Analíticas - baseiam-se em formulação matemática obtidas com o objetivo de se atender condições (características) préviamente estabelecidas (é o caso da maior parte das projeções existentes).
a) Planas - este tipo de superfície pode assumir três posições básicas em relação a superfície de referência: polar, equatorial e oblíqua (ou horizontal) (Figura 2.4).
b) Cônicas - embora esta não seja uma superfície plana, já que a superfície de projeção é o cone, ela pode ser desenvolvida em um plano sem que haja distorções (Figura 2.5), e funciona como superfície auxiliar na obtenção de uma representação. A sua posição em relação à superfície de referência pode ser: normal, transversal e oblíqua (ou horizontal) (Figura 2.4).
c) Cilíndricas - tal qual a superfície cônica, a superfície de projeção que utiliza o cilindro pode ser desenvolvida em um plano (Figura 2.5) e suas possíveis posições em relação a superfície de referência podem ser: equatorial, transversal e oblíqua (ou horizontal) (Figura 2.4).
d) Polissuperficiais - se caracterizam pelo emprego de mais do que uma superfície de projeção (do mesmo tipo) para aumentar o contato com a superfície de referência e, portanto, diminuir as deformações (plano-poliédrica ; cone-policônica ; cilindro-policilíndrica).

Figura .2.5 - Superfícies de Projeção desenvolvidas em um plano.
Na impossibilidade de se desenvolver uma superfície esférica ou elipsóidica sobre um plano sem deformações, na prática, buscam-se projeções tais que permitam diminuir ou eliminar parte das deformações conforme a aplicação desejada. Assim, destacam-se:
a) Eqüidistantes - As que não apresentam deformações lineares para algumas linhas em especial, isto é, os comprimentos são representados em escala uniforme.
b) Conformes - Representam sem deformação, todos os ângulos em torno de quaisquer pontos, e decorrentes dessa propriedade, não deformam pequenas regiões.
c) Equivalentes - Têm a propriedade de não alterarem as áreas, conservando assim, uma relação constante com as suas correspondentes na superfície da Terra. Seja qual for a porção representada num mapa, ela conserva a mesma relação com a área de todo o mapa.
d) Afiláticas - Não possui nenhuma das propriedades dos outros tipos, isto é, equivalência, conformidade e eqüidistância, ou seja, as projeções em que as áreas, os ângulos e os comprimentos não são conservados.
As propriedades acima descritas são básicas e mutuamente exclusivas. Elas ressaltam mais uma vez que não existe uma representação ideal, mas apenas a melhor representação para um determinado propósito.
a) Tangentes - a superfície de projeção é tangente à de referência (plano- um ponto; cone e cilindro- uma linha).
b) Secantes - a superfície de projeção secciona a superfície de referência (plano- uma linha; cone- duas linhas desiguais; cilindro- duas linhas iguais) (Figura 2.6).
Através da composição das diferentes características apresentadas nesta classificação das projeções cartográficas, podemos especificar representações cartográficas cujas propriedades atendam as nossas necessidades em cada caso específico.

Figura 2.6 - Superfícies de projeção secantes
- Superfície de representação: diversos cones
- Não é conforme nem equivalente (só tem essas características próxima ao Meridiano Central).
- O Meridiano Central e o Equador são as únicas retas da projeção. O MC é dividido em partes iguais pelos paralelos e não apresenta deformações.
- Os paralelos são círculos não concêntricos (cada cone tem seu próprio ápice) e não apresentam deformações.
- Os meridianos são curvas que cortam os paralelos em partes iguais.
- Pequena deformação próxima ao centro do sistema, mas aumenta rapidamente para a periferia.
Aplicações: Apropriada para uso em países ou regiões de extensão predominantemente Norte-Sul e reduzida extensão Este-Oeste.
É muito popular devido à simplicidade de seu cálculo pois existem tabelas completas para sua construção.
É amplamente utilizada nos EUA.
No BRASIL é utilizada em mapas da série Brasil, regionais, estaduais e temáticos.

Figura 2.7 - Projeção Policônica
- Cônica.
- Conforme.
- Analítica.
- Secante.
- Os meridianos são linhas retas convergentes.
- Os paralelos são círculos concêntricos com centro no ponto de interseção dos meridianos.
Aplicações: A existência de duas linhas de contato com a superfície (dois paralelos padrão) nos fornece uma área maior com um baixo nível de deformação. Isto faz com que esta projeção seja bastante útil para regiões que se estendam na direção este-oeste, porém pode ser utilizada em quaisquer latitudes.
A partir de 1962, foi adotada para a Carta Internacional do Mundo, ao Milionésimo.

Figura 2.8 - Projeção Cônica Normal de Lambert (com dois paralelos-padrão)
- Cilíndrica.
- Conforme.
- Analítica.
- Tangente (a um meridiano).
- Os meridianos e paralelos não são linhas retas, com exceção do meridiano de tangência e do Equador.
- Aplicações: Indicada para regiões onde há predominância na extensão Norte-Sul. É muito utilizada em cartas destinadas à navegação.

Figura 2.9 - Projeção Cilíndrica Transversa de Mercartor
- Cilíndrica.
- Conforme.
- Secante.
- Só o Meridiano Central e o Equador são linhas retas.
- Projeção utilizada no SISTEMA UTM - Universal Transversa de Mercator desenvolvido durante a 2ª Guerra Mundial. Este sistema é, em essência, uma modificação da Projeção Cilíndrica Transversa de Mercator.
Aplicações: Utilizado na produção das cartas topográficas do Sistema Cartográfico Nacional produzidas pelo IBGE e DSG.

Figura 2.10 - Cilindro secante
1) O mundo é dividido em 60 fusos, onde cada um se estende por 6º de longitude. Os fusos são numerados de um a sessenta começando no fuso 180º a 174º W Gr. e continuando para este. Cada um destes fusos é gerado a partir de uma rotação do cilindro de forma que o meridiano de tangência divide o fuso em duas partes iguais de 3º de amplitude (Figura 2.11).
2) O quadriculado UTM está associado ao sistema de coordenadas plano-retangulares, tal que um eixo coincide com a projeção do Meridiano Central do fuso (eixo N apontando para Norte) e o outro eixo, com o do Equador. Assim cada ponto do elipsóide de referência (descrito por latitude, longitude) estará biunivocamente associado ao terno de valores Meridiano Central, coordenada E e coordenada N.
3) Avaliando-se a deformação de escala em um fuso UTM (tangente), pode-se verificar que o fator de escala é igual a 1(um) no meridiano central e aproximadamente igual a 1.0015 (1/666) nos extremos do fuso. Desta forma, atribuindo-se a um fator de escala k = 0,9996 ao meridiano central do sistema UTM (o que faz com que o cilindro tangente se torne secante), torna-se possível assegurar um padrão mais favorável de deformação em escala ao longo do fuso. O erro de escala fica limitado a 1/2.500 no meridiano central, e a 1/1030 nos extremos do fuso (Figura 2.12).
4) A cada fuso associamos um sistema cartesiano métrico de referência, atribuindo à origem do sistema (interseção da linha do Equador com o meridiano central) as coordenadas 500.000 m, para contagem de coordenadas ao longo do Equador, e 10.000.000 m ou 0 (zero) m, para contagem de coordenadas ao longo do meridiano central, para os hemisfério sul e norte respectivamente. Isto elimina a possibilidade de ocorrência de valores negativos de coordenadas.
5) Cada fuso deve ser prolongado até 30' sobre os fusos adjacentes criando-se assim uma área de superposição de 1º de largura. Esta área de superposição serve para facilitar o trabalho de campo em certas atividades.
6) O sistema UTM é usado entre as latitudes 84º N e 80º S.
Além desses paralelos a projeção adotada mundialmente é a Estereográfica Polar Universal.
Aplicações: Indicada para regiões de predominância na extensão Norte-Sul entretanto mesmo na representação de áreas de grande longitude poderá ser utilizada.
É a mais indicada para o mapeamento topográfico a grande escala, e é o Sistema de Projeção adotado para o Mapeamento Sistemático Brasileiro.
O sistema de coordenadas geodésicas ou o UTM permite o posicionamento de qualquer ponto sobre a superfície da Terra, no entanto é comum se desejar posicionamento relativo de direção nos casos de navegação. Assim, ficam definidos três vetores associados a cada ponto:
Norte Verdadeiro ou de Gauss - Com direção tangente ao meridiano (geodésico) passante pelo ponto e apontado para o Polo Norte.
Norte Magnético - Com direção tangente à linha de força do campo magnético passante pelo ponto e apontado para o Polo Norte Magnético.
OBS.: Devido à significativa variação da ordem de minutos de arco anualmente deste pólo ao longo dos anos, torna-se necessária a correção do valor constantes da carta/mapa para a data do posicionamento desejado.
Norte da Quadrícula - Com direção paralela ao eixo N (que coincide com o Meridiano Central do fuso) do Sistema de Projeção UTM no ponto considerado e apontado para o Norte (sentido positivo de N)
Azimute: É o ângulo formado entre a direção Norte-Sul e a direção considerada, contado a partir do Pólo Norte, no sentido horário. O Azimute varia de 0º a 360º e dependendo do Norte ao qual esteja a referenciado podemos ter:
- Azimute Verdadeiro ou de Gauss ( Az G AB )
- Azimute da Quadrícula ( Az Q AB )
- Azimute Magnético ( Az M AB )
OBS.: O azimute Geodésico corresponde ao Azimute Verdadeiro contato a partir do Polo Sul.
Contra-azimute: Contra-Azimute de uma direção é o Azimute da direção inversa.
Declinação Magnética ( d ): É o ângulo formado entre os vetores Norte Verdadeiro e o Norte Magnético associado a um ponto.
Convergência Meridiana Plana ( g ): É o ângulo formado entre os vetores Norte Verdadeiro e o Norte da Quadrícula associado a um ponto.
No sistema UTM, a Convergência Meridiana Plana cresce com a latitude e com o afastamento do Meridiano Central (MC).
No hemisfério Norte ela é positiva a Este do MC e negativa a Oeste do MC.
No hemisfério Sul ela é negativa a Este do MC e positiva a Oeste do MC.
Rumo: É o menor ângulo que uma direção faz com a Direção Norte- Sul.
Após o valor do rumo deve ser indicado o quadrante geográfico a que o mesmo pertence, ou seja: NO, NE, SO ou SE.
OBS: Como os azimutes, os rumos, dependendo do norte ao qual são referenciados podem ser: Rumo verdadeiro, da quadrícula ou magnético.
Contra-rumo: É o rumo da direção inversa.
Quanto à natureza da representação:
                CADASTRAL - Até 1:25.000
a) GERAL   TOPOGRÁFICA - De 1:25.000 até 1:250.000
                GEOGRÁFICA - 1:1:000.000 e menores
                                    (1:2.500.000, 1:5.000.000 até 1:30.000.000)
b) TEMÁTICA
c) ESPECIAL
São documentos cartográficos elaborados sem um fim específico. A finalidade é fornecer ao usuário uma base cartográfica com possibilidades de aplicações generalizadas, de acordo com a precisão geométrica e tolerâncias permitidas pela escala.
Apresentam os acidentes naturais e artificiais e servem, também, de base para os demais tipos de cartas.
Representação em escala grande, geralmente planimétrica e com maior nível de detalhamento, apresentando grande precisão geométrica. Normalmente é utilizada para representar cidades e regiões metropolitanas, nas quais a densidade de edificações e arruamento é grande.
As escalas mais usuais na representação cadastral, são: 1:1.000, 1:2.000, 1:5.000, 1:10.000 e 1:15.000.
Mapa de Localidade - Denominação utilizada na Base Territorial dos Censos para identificar o conjunto de plantas em escala cadastral, que compõe o mapeamento de uma localidade (região metropolitana, cidade ou vila).
Carta elaborada a partir de levantamentos aerofotogramétrico e geodésico original ou compilada de outras cartas topográficas em escalas maiores. Inclui os acidentes naturais e artificiais, em que os elementos planimétricos (sistema viário, obras, etc.) e altimétricos (relevo através de curvas de nível, pontos colados, etc.) são geometricamente bem representados.
As aplicações das cartas topográficas variam de acordo com sua escala:
1:25.000 - Representa cartograficamente áreas específicas, com forte densidade demográfica, fornecendo elementos para o planejamento socioeconômico e bases para anteprojetos de engenharia. Esse mapeamento, pelas características da escala, está dirigido para as áreas das regiões metropolitanas e outras que se definem pelo atendimento a projetos específicos. Cobertura Nacional: 1,01%.
1:50.000 - Retrata cartograficamente zonas densamente povoadas, sendo adequada ao planejamento socioeconômico e à formulação de anteprojetos de engenharia.
A sua abrangência é nacional, tendo sido cobertos até agora 13,9% do Território Nacional, concentrando-se principalmente nas regiões Sudeste e Sul do país.
1:100.000 - Objetiva representar as áreas com notável ocupação, priorizadas para os INVESTIMENTOS governamentais, em todos os níveis de governo- Federal, Estadual e Municipal.
A sua abrangência é nacional, tendo sido coberto até agora 75,39% do Território Nacional.
1:250.000 - Subsidia o planejamento regional, além da elaboração de estudos e projetos que envolvam ou modifiquem o meio ambiente.
A sua abrangência é nacional, tendo sido coberto até o momento 80,72% do Território Nacional.
Mapa Municipal : Entre os principais produtos cartográficos produzidos pelo IBGE encontra-se o mapa municipal, que é a representação cartográfica da área de um município, contendo os limites estabelecidos pela Divisão Político-Administrativa, acidentes naturais e artificiais, toponímia, rede de coordenadas geográficas e UTM, etc..
Esta representação é elaborada a partir de bases cartográficas mais recentes e de documentos cartográficos auxiliares, na escala das referidas bases.
O mapeamento dos municípios brasileiros é para fins de planejamento e gestão territorial e em especial para dar suporte as atividades de coleta e disseminação de pesquisas do IBGE.
Carta em que os detalhes planimétricos e altimétricos são generalizados, os quais oferecem uma precisão de acordo com a escala de publicação. A representação planimétrica é feita através de símbolos que ampliam muito os objetos correspondentes, alguns dos quais muitas vezes têm que ser bastante deslocados.
A representação altimétrica é feita através de curvas de nível, cuja equidistância apenas dá uma idéia geral do relevo e, em geral, são empregadas cores hipsométricas. São elaboradas na escala. 1:500.000 e menores, como por exemplo a Carta Internacional do Mundo ao Milionésimo (CIM).
Mapeamento das Unidades Territoriais : Representa, a partir do mapeamento topográfico, o espaço territorial brasileiro através de mapas elaborados especificamente para cada unidade territorial do país.
Produtos gerados:-Mapas do Brasil (escalas 1:2.500.000,1:5.000.000,1:10.000.000, etc.).
-Mapas Regionais (escalas geográficas diversas).
-Mapas Estaduais (escalas geográficas e topográficas diversas).
São as cartas, mapas ou plantas em qualquer escala, destinadas a um tema específico, necessária às pesquisas socioeconômicas, de recursos naturais e estudos ambientais. A representação temática, distintamente da geral, exprime conhecimentos particulares para uso geral.
Com base no mapeamento topográfico ou de unidades territoriais, o mapa temático é elaborado em especial pelos Departamentos da Diretoria de Geociências do IBGE, associando elementos relacionados às estruturas territoriais, à geografia, à estatística, aos recursos naturais e estudos ambientais.
Principais produtos: -Cartogramas temáticos das áreas social, econômica territorial,etc.
-Cartas do levantamento de recursos naturais (volumes RADAM).
-Mapas da série Brasil 1:5.000.000 (Escolar, Geomorfológico, Vegetação, Unidades de Relevo, Unidades de Conservação Federais).
- Atlas nacional, regional e estadual.
São as cartas, mapas ou plantas para grandes grupos de usuários muito distintos entre si, e cada um deles, concebido para atender a uma determinada faixa técnica ou científica. São documentos muito específicos e sumamente técnicos que se destinam à representação de fatos, dados ou fenômenos típicos, tendo assim, que se cingir rigidamente aos métodos e objetivos do assunto ou atividade a que está ligado. Por exemplo: Cartas náuticas, aeronáuticas, para fins militares, mapa magnético, astronômico, meteorológico e outros.
Náuticas: Representa as profundidades, a natureza do fundo do mar, as curvas batimétricas, bancos de areia, recifes, faróis, boias, as marés e as correntes de um determinado mar ou áreas terrestres e marítimas.
Elaboradas de forma sistemática pela Diretoria de Hidrografia e Navegação - DHN, do Ministério da Marinha. O Sistema Internacional exige para a navegação marítima, seja de carga ou de passageiros, que se mantenha atualizado o mapeamento do litoral e hidrovias.
Aeronáuticas: Representação particularizada dos aspectos cartográficos do terreno, ou parte dele, destinada a apresentar além de aspectos culturais e hidrográficos, informações suplementares necessárias à navegação aérea, pilotagem ou ao planejamento de operações aéreas.
Para fins militares: Em geral, são elaboradas na escala 1:25.000, representando os acidentes naturais do terreno, indispensáveis ao uso das forças armadas. Pode representar uma área litorânea características topográficas e náuticas, a fim de que ofereça a máxima utilidade em operações militares, sobretudo no que se refere a operações anfíbias.
Fornece subsídios para a execução de estudos e análises de aspectos gerais e estratégicos, no nível continental. Sua abrangência é nacional, contemplando um conjunto de 46 cartas.
É uma representação de toda a superfície terrestre, na projeção cônica conforme de LAMBERT (com 2 paralelos padrão) na escala de 1:1.000.000.
A distribuição geográfica das folhas ao Milionésimo foi obtida com a divisão do planeta (representado aqui por um modelo esférico) em 60 fusos de amplitude 6º, numerados a partir do fuso 180º W - 174º W no sentido Oeste-Leste (Figura 2.13). Cada um destes fusos por sua vez estão divididos a partir da linha do Equador em 21 zonas de 4º de amplitude para o Norte e com o mesmo número para o Sul.
Como o leitor já deve ter observado, a divisão em fusos aqui apresentada é a mesma adotada nas especificações do sistema UTM. Na verdade, o estabelecimento daquelas especificações é pautado nas características da CIM.
Cada uma das folhas ao Milionésimo pode ser acessada por um conjunto de três caracteres:
1º) letra N ou S - indica se a folha está localizada ao Norte ou a Sul do Equador.
2º) letras A até U - cada uma destas letras se associa a um intervalo de 4º de latitude se desenvolvendo a Norte e a Sul do Equador e se prestam a indicação da latitude limite da folha (3).
3º) números de 1 a 60 - indicam o número de cada fuso que contém a folha.
OBS: O Território Brasileiro é coberto por 08 (oito) fusos. (Figura 2.14)

(3) Além das zonas de A a U, temos mais duas que abrangem os paralelos de 84º a 90º. A saber: a zona V que é limitada pelos paralelos 84º e 88º e a zona Z, ou polar, que vai deste último até 90º. Neste intervalo, que corresponde as regiões Polares, a Projeção de Lambert não atende convenientemente a sua representação. Utiliza-se então a Projeção Estereográfica Polar.

Figura 2.13 - Carta Internacional do Mundo ao Milionésimo

Figura 2.14 - O Brasil dividido em fusos de 6º
Este índice tem origem nas folhas ao Milionésimo, e se aplica a denominação de todas as folhas de cartas do mapeamento sistemático (escalas de 1:1.000.000 a 1:25.000).
A Figura 2.15 apresenta a referida nomenclatura.
Para escalas maiores que 1:25.000 ainda não existem normas que regulamentem o código de nomenclatura. O que ocorre na maioria das vezes é que os órgãos produtores de cartas ou plantas nessas escalas adotam seu próprio sistema de articulação de folhas, o que dificulta a interligação de documentos produzidos por fontes diferentes.
Existem dois sistemas de articulação de folhas que foram propostos por órgãos envolvidos com a produção de documentos cartográficos em escalas grandes:
O primeiro, proposto e adotado pela Diretoria de Eletrônica e Proteção ao vôo (e também adotado pela COCAR), se desenvolve a partir de uma folha na escala 1:100.000 até uma folha na escala 1:500.
O segundo, elaborado pela Comissão Nacional de Região Metropolitana e Política Urbana, tem sido adotado por vários órgãos responsáveis pela Cartografia Regional e Urbana de seus estados. Seu desenvolvimento se dá a partir de uma folha na escala 1:25.000 até uma folha na escala 1:1.000.

Figura 2.15 - Nomenclatura das cartas do mapeamento sistemático
Além do índice de nomenclatura, dispomos também de um outro sistema de localização de folhas. Neste sistema numeramos as folhas de modo a referenciá-las através de um simples número, de acordo com as escalas. Assim:
- para as folhas de 1:1.000.000 usamos uma numeração de 1 a 46;
- para as folhas de 1:250.000 usamos uma numeração de 1 a 550;
- para as folhas de 1:100.000, temos 1 a 3036;
Estes números são conhecidos como "MI" que quer dizer número correspondente no MAPA-ÍNDICE.
O número MI substitui a conFigura ção do índice de nomenclatura para escalas de 1:100.000, por exemplo, à folha SD-23-Y-C-IV corresponderá o número MI 2215.
Para as folhas na escala 1:50.000, o número MI vem acompanhado do número (1,2,3 ou 4) conforme a situação da folha em relação a folha 1:100.000 que a contém. Por exemplo, à folha SD-23-Y-C-IV-3 corresponderá o número MI 2215-3.
Para as folhas de 1:25.000 acrescenta-se o indicador (NO,NE,SO e SE) conforme a situação da folha em relação a folha 1:50.000 que a contém, por exemplo, à folha SD-23-Y-C-IV-3-NO corresponderá o número MI 2215-3-NO.
A aparição do número MI no canto superior direito das folhas topográficas sistemáticas nas escalas 1:100.000, 1:50.000 e 1:25.000 é norma cartográfica hoje em vigor, conforme recomendam as folhas-modelo publicadas pela Diretoria de Serviço Geográfico do Exército, órgão responsável pelo estabelecimento de Normas Técnicas para as séries de cartas gerais, das escalas 1:250.000 e maiores.
Entende-se por Sensoriamento Remoto a utilização conjunta de modernos sensores, equipamentos para processamento e transmissão de dados, aeronaves, espaçonaves e etc., com o objetivo de estudar o ambiente terrestre através do registro e da análise das interações entre a radiação eletromagnética e as substâncias componentes do planeta Terra, em suas mais diversas manifestações.
1 - Fontes de energia eletromagnética:
Natural: O Sol é a principal fonte de energia eletromagnética. Toda matéria a uma temperatura absoluta acima de (0º K) emite energia, podendo ser considerada como uma fonte de radiação.
Artificial: Câmaras com flash, sensores microondas
2 - Energia eletromagnética:
A forma mais conhecida da energia eletromagnética é a luz visível, embora outras formas como raios X, ultravioleta, ondas de rádio e calor também sejam familiares.
Todas essas formas além de outras menos conhecidas são basicamente da mesma natureza e sua forma de propagação pode ser explicada através de duas teorias. Uma teoria é conhecida como "Modelo Corpuscular" e preconiza que a energia se propaga pela emissão de um fluxo de partículas (fótons). Outra, é conhecida como "Modelo Ondulatório" e postula que a propagação da energia se faz através de um movimento ondulatório. Esta teoria descreve a energia eletromagnética como uma feição sinuosa harmônica que se propaga no vácuo à velocidade da luz, ou seja, 3x10m/s.
Uma carga elétrica produz ao seu redor um campo elétrico (E). Quando essa carga entra em movimento desenvolve-se ao seu redor uma corrente eletromagnética. A aceleração de uma carga elétrica provoca perturbações nos campos elétrico e magnético, que se propagam repetitivamente no vácuo.
Uma onda eletromagnética pode então ser definida como a oscilação do campo elétrico (E) e magnético (M) segundo um padrão harmônico de ondas, ou seja, espaçadas repetitivamente no tempo.
Duas características importantes das ondas eletomagnéticas:
- Comprimento de onda: É a distância entre dois picos consecutivos de ondas eletromagnéticas. Por exemplo, os sensores da faixa do visível apresentam comprimento de onda que variam de 0,38 m m a 0,78 m m.
l ® m m onde, 1 m m = 1x10-6 m
- Frequência: Nº de picos que passa por um determinado ponto numa unidade de tempo.
A frequência é diretamente proporcional à velocidade de propagação da radiação, mas como essa velocidade é constante para um mesmo meio de propagação, para que haja alteração na frequência é necessário que haja alteração no comprimento de onda (l ).
V = l x f Þ l = V/f    onde,    V = veloc. da luz = 300.000 Km/s
                                           f = frequência, medida em Hertz (Hz)
3 - O espectro eletromagnético
Pode ser ordenado em função do seu comprimento de onda ou de sua frequência. O espectro eletromagnético se estende desde comprimentos de onda muito curtos associados a raios cósmicos até ondas de rádio de baixa frequência e grandes comprimentos de onda.
As características de cada elemento observado determinam a maneira particular segundo a qual emite ou reflete energia, ou seja, a sua "assinatura" espectral. Um grande nº de interações torna-se possível quando a energia eletromagnética entra em contato com a matéria. Essas interações produzem modificações na energia incidente, assim, ela pode ser:
- Transmitida: Propaga-se através da matéria
- Absorvida: Cede a sua energia, sobretudo no aquecimento da matéria
- Refletida: Retorna sem alterações da superfície da matéria à origem
- Dispersa: Deflectida em todas as direções e perdida por absorção e por novas deflexões
- Emitida: Geralmente reemitida pela matéria em função da temperatura e da estrutura molecular
Reflectância espectral: É a comparação entre a quantidade de energia refletida por um alvo e a incidente sobre ele.
Esse comportamento por qualquer matéria, é seletivo em relação ao comprimento de onda, e específico para cada tipo de matéria, dependendo basicamente de sua estrutura atômica e molecular. Assim, em princípio, torna-se possível a identificação de um objeto observado por um sensor, através da sua "assinatura espectral".
4 - Sistemas sensores
Um sistema sensor pode ser definido como qualquer equipamento capaz de transformar alguma forma de energia em um sinal passível de ser convertido em informação sobre o ambiente. No caso específico do Sensoriamento Remoto, a energia utilizada é a radiação eletromagnética.
4.1- Classificação dos Sensores Remotos
a) Quanto aos modelos operantes
- Ativos: Possuem sua própria fonte de radiação, a qual incide em um alvo, captando em seguida o seu reflexo. Ex.: Radar
- Passivos: Registra irradiações diretas ou refletidas de fontes naturais. Dependem de uma fonte de radiação externa para que possam operar. Ex.: Câmara fotográfica
b) Quanto ao tipo de transformação sofrida pela radiação detectada
- Não imageador: Não fornecem uma imagem da superfície sensoriada e sim registros na forma de dígitos ou gráficos.
- Imageador: Fornecem, mesmo por via indireta, uma imagem da superfície observada através do Sistema de quadros ou Sistema de Varredura.
Sistemas de quadro: Adquirem a imagem da cena em sua totalidade num mesmo instante.
Sistemas de Varredura: A imagem da cena é formada pela aquisição seqüencial de imagens elementares do terreno ou elementos de resolução, também chamado "pixels".
- Resolução: É a medida da habilidade que o sistema sensor possui em distinguir objetos que estão próximos espacialmente ou respostas que são semelhantes, espectralmente.
- Resolução espacial: Mede a menor separação angular ou linear entre dois objetos. Ex.: Um sistema de resolução de 30m (LANDSAT) significa que os objetos distanciados de 30m serão em geral distinguidos pelo sistema. Assim, quanto menor a resolução espacial, maior o poder resolutivo, ou seja, maior o seu poder de distinguir entre objetos muito próximos.
- Resolução espectral: É uma medida da largura das faixas espectrais e da sensibilidade do sensor em distinguir entre dois níveis de intensidade do sinal de retorno.
- Resolução temporal (Repetitividade): É o tempo entre as aquisições sucessivas de dados de uma mesma área.
5- Aquisição de dados em Sensoriamento Remoto
É o procedimento pelos quais os sinais são detectados, gravados e interpretados. A detecção da energia eletromagnética pode ser obtida de duas formas:
Fotograficamente: O processo utiliza reações químicas na superfície de um filme sensível à luz para detectar variações de imagem dentro de uma câmara e registrar os sinais detectados gerando uma imagem fotográfica.
Eletronicamente: O processo eletrônico gera sinais elétricos que correspondem às variações de energia provenientes da interação entre a energia eletromagnética e a superfície da terra. Esses sinais são transmitidos às estações de captação onde são registrados geralmente numa fita magnética, podendo depois serem convertidos em imagem.
6- Sensores Imageadores
Os sensores que produzem imagens podem ser classificados em função do processo de formação de imagem, em:
6.1- Sistemas Fotográficos: Foram os primeiros equipamentos a serem desenvolvidos, e possuem exelente resolução espacial. Compõem esse sistema, as câmaras fotográficas (objetiva, diafragma, obturador e o corpo), filtros e filmes.
6.2- Sistemas de imageamento eletro-óptico: Diferem do sistema fotográfico porque os dados são registrados em forma de sinal elétrico, possibilitando sua transmissão à distância. Os componentes básicos desses sensores são um sistema óptico e um detector. A função do sistema óptico é focalizar a energia proveniente da área observada sobre o detector. A energia detectada é transformada em sinal elétrico.
- Sistema de Imageamento Vidicon ( sistema de quadro): Tiveram origem a partir de sistema de televisão. Nesse sistema a cena é coletada de forma instantânea. Um exemplo de produto de Sensoriamento Remoto obtido por esse tipo de sensor são as imagens RBV coletadas pelas câmaras RBV à bordo dos satélites 1, 2 e 3 da série LANDSAT.
- Sistema de Varredura Eletrônica: Utiliza um sistema óptico através do qual a imagem da cena observada é formada por sucessivas linhas imageadas pelo arranjo linear de detetores na medida que a plataforma se locomove ao longo da linha de órbita. Esse sistema é utilizado em diversos programas espaciais, como por exemplo o SPOT (França).
- Sistema de Varredura Mecânica: Esse sistema, onde a cena é imageada linha por linha, vem sendo utilizado pelos sensores MSS e TM a bordo dos satélites da série LANDSAT. O espelho de varredura oscila perpendicularmente em direção ao deslocamento da plataforma, refletindo as radiâncias provenientes dos pixels no eixo de oscilação. Após uma varredura completa, os sinais dos pixels formam uma linha, e juntando os sinais linha a linha, forma-se a imagem da cena observada.
6.3- Sistemas de Microondas: O sistema de imageamento mais comum é o dos Radares de Visada Lateral, que por ser um sistema ativo não é afetado pelas variações diurnas na radiação refletida pela superfície do terreno, podendo ser usado inclusive à noite. Pode operar em condições de nebulosidade, uma vez que as nuvens são transparentes à radiação da faixa de microondas.
O termo "Radar" é derivado da expressão Inglesa "Radio Detecting and Ranging", que significa: detectar e medir distâncias através de ondas de rádio.
Inicialmente os radares destinavam-se a fins militares. No decorrer da Segunda Guerra Mundial a Inglaterra foi equipada com eficiente rede de Radar, mas só a partir da década de 60 os geocientistas procuraram aplicar os princípios de Radar para fins de levantamento de recursos naturais.
A grande vantagem do sensor Radar é que o mesmo atravessa a cobertura de nuvens. Pelo fato de ser um sensor ativo, não depende da luz solar e consequentemente pode ser usado à noite, o que diminui sobremaneira o período de tempo do aerolevantamento.
Um trabalho de relevância foi realizado na América do Sul, em especial na Região Amazônica pela Grumman Ecosystens. Esta realizou o levantamento de todo o território brasileiro, com a primeira fase em 1972 (Projeto RADAM) e posteriormente em 1976, na complementação do restante do Brasil (Projeto RADAM BRASIL).
Desde o final da década de 70 até o presente momento, uma série de Programas de Sistema Radar, foram executados ou estão em avançado estágio de desenvolvimento: SEAT; SIR-A; SIR-B; SIR-C (EUA); ERS-1 e ERS-2 (Europeu); JERS-1 e JERS-2 (Japão); ALMOZ (Rússia) e RADAR SAT(Canadá).

Banda

Comprimento de Onda (cm)

Freqüência
Q
0,75 - 1,18
40,0 - 26,5
K
1,18 - 2,40
26,5 - 12,5
X
2,40 - 3,75
12,5 - 8
C
3,75 - 7,50
8,0 - 4,0
S
7,50 - 15
4,0 - 2,0
L
15,00 - 30
2,0 - 1,0
UHF
30,00 - 100
1,0 - 0,3
P
77,00 - 136
0,2 - 0,4
O radar de visada lateral (RVL) situa-se na faixa de microondas do espectro eletromagnético, variando entre comprimentos de onda de 100 cm a 1mm, e freqüência de 0,3 a 50 GHZ.
Como imagem orbital, considera-se a aquisição de dados de sensoriamento remoto através de equipamentos sensores coletores à bordo de satélites artificiais.
Desde a década de 70, o IBGE vem utilizando imagens de satélite da série LANDSAT. Estas imagens, uma vez corrigidas geometricamente dos efeitos de rotação e esfericidade da Terra, variações de atitude, altitude e velocidade do satélite, constituem-se em valiosos instrumentos para a Cartografia, na representação das regiões onde a topografia é difícil e onde as condições de clima adversos não permitem fotografar por métodos convencionais.
No sistema de Sensoriamento Remoto do satélite LANDSAT, a produção de radiação que retorna ao sensor é direcionada para vários detectores, recebendo cada um deles, comprimento de ondas diferente, gerando 7 bandas distintas do espectro eletromagnético, sendo este sensor conhecido como multiespectral. O que na fotografia aérea (visível) e radar (microondas), possui uma pequena faixa espectral.
Para que o sistema de coleta de dados funcione é necessário que sejam preenchidas algumas condições:

a) Existência de fonte de radiação.
b) Propagação de radiação pela atmosfera.
c) Incidência de radiação sobre a superfície terrestre.
d) Ocorrência de interação entre a radiação e os objetos da superfície.
e) Produção de radiação que retorna ao sensor após propagar-se pela atmosfera.
O Sol é a principal fonte de energia eletromagnética disponível para o Sensoriamento Remoto da superfície terrestre. Quando observado como fonte de energia eletromagnética, o Sol pode ser considerado como uma esfera de gás aquecida pelas reações nucleares ocorridas no seu interior. A superfície aparente do Sol é conhecida por fotosfera e sua energia irradiada é a principal fonte de radiação eletromagnética no Sistema Solar. Esta energia radiante proveniente do Sol em direção à Terra, é chamada "Fluxo Radiante".
O Sistema LANDSAT, originalmente denominado ERTS (Earth Resources Technology Satellite) foi desenvolvido com o objetivo de se obter uma ferramenta prática no inventário e no manejo dos recursos naturais da Terra.
Planejou-se uma série de 6 satélites, tendo-se lançado o primeiro em julho de 1975.
SATÉLITE
DATA DE LANÇAMENTO
PROBLEMAS OPERACIONAIS
TÉRMINO DE OPERAÇÃO
Landsat 1
Jul´ 72
-
Jan´ 78
Landsat 2
Jan´ 75
Nov´79/Fev´82
Jul´ 83
Landsat 3
Mar´ 78
Dez´80/Mar´83
Set´ 83
Landsat 4
Jul´ 82
Fev´83(apenas TM)
-
Landsat 5
Mar´ 84
-
-
Figura 2.17 - Satélites da série LANDSAT
O quadro apresenta o período de vida útil possuido pelos satélites, que embora tenham sido concebidos para terem uma vida média útil de 2 anos, mantiveram-se em operação durante cerca de 5 anos.

Figura 2.18 - Configuração dos satélites da série LANDSAT
O Sistema LANDSAT, como qualquer outro sistema de Sensoriamento Remoto, compõe-se de duas partes principais:
- Subsistema satélite:Tem a função básica de adquirir os dados. Como componentes básicos, tem o satélite com o seu conjunto de sensores e sistemas de controle.
- Subsistema estação terrestre: Tem a função de processar os dados e torna-los utilizáveis pelos usuários. É composto por estações de recepção, processamento e distribuição dos dados.
As operações de uma estação de recepção de dados são:

- Verificar os equipamentos antes da entrada do satélite no campo de visualização da antena.
- Apontamento da antena na direção de conecção com o satélite.
- Rastreamento automático.
- Registro dos dados em fita de alta densidade (HDDT).
- Verificação da qualidade dos dados gravados.
- Retorno da antena à posição de descanso.
O laboratório de processamento de imagens tem a função de transformar os dados recebidos pelas estações de recepção. As atividades executadas neste processamento são: calibração radiométrica e correção geométrica baseada nos seguintes dados:

- Rotação e curvatura da Terra.
- Atitude do satélite
- Geometria dos instrumentos
- Projeção cartográfica utilizada, etc.
Através de arquivo de pontos de controle obtidos no terreno ou oriundos de cartas topográficas, pode-se melhorar a posição geométrica das imagens.
Os principais produtos resultantes do processamento de dados e disponibilizados para o usuário são fitas magnéticas ou imagens fotográficas e digitais.
A órbita do satélite LANDSAT é repetitiva, quase circular, sol-síncrona e quase polar. A altitude dos satélites da série 4 e 5 é inferior à dos primeiros, posicionado a 705 Km em relação a superfície terrestre.no Equador.
PARÂMETROS ORBITAIS
LANDSAT (MSS) 1, 2 e 3
LANDSAT (TM) 4 e 5
Resolução
80 m
30 m
Inclinação (graus)
99,114
98
Período (minuto)
103,267
98,20
Recobrimento da faixa
185 x 185 Km
185 x 185 Km
Hora da passagem pelo Equador
09:15
09:45
Ciclo de cobertura
18 dias
16 dias
Duração do ciclo
251 revoluções
233 revoluções
Distância entre passagens no Equador
2.760 Km
2.760 Km
Altitude (Km)
920
709
Figura 2.19 - Características da órbita do LANDSAT
Os satélites LANDSAT 1 e 2 carregavam a bordo 2 sistemas sensores com a mesma resolução espacial, mas com diferentes concepções de imageamento: o sistema RBV(Returm Beam Vidicon), com imageamento instantâneo de toda a cena e o sistema MSS, com imageamento do terreno por varredura de linhas.
Ambos os sistemas propunham-se a aquisição de dados multiespectrais, mas o desempenho do sistema MSS (Multi Spectral Scanner) fez com que o terceiro satélite da série tivesse seu sistema RBV modificado, passando a operar em uma faixa do espectro ao invés de três. Por outro lado, foi acrescentada uma faixa espectral ao sistema MSS, passando a operar na região do infravermelho termal.
A partir do LANDSAT 4, ao invés do sensor RBV, a carga útil do satélite passou a contar com o sensor TM (Thematic Mapper) operando em 7 faixas espectrais. Esse sensor conceitualmente é semelhante ao MSS pois é um sistema de varredura de linhas. Entretanto, incorpora uma série de aperfeiçoamentos, como resolução espacial mais fina, melhor discriminação espectral entre objetos da superfície terrestre, maior fidelidade geométrica e melhor precisão radiométrica.
Cada vez que o espelho imageador visa o terreno, a voltagem produzida por cada detector é amostrada a cada 9,95 microssegundos para um detector, aproximadamente 3.300 amostras são tomadas ao longo de uma linha de varredura com 185,2 Km.
As medidas individuais de radiação são arranjadas nas imagens, com dimensões de 30 x 30 metros. Esta área chama-se elemento de imagem ou pixel, que corresponde à menor unidade que forma uma imagem.
A detecção de objetos no terreno depende da relação entre o tamanho do objeto e o seu brilho (valor de brilho).
2_20.gif (8454 bytes)
Figura 2.20 Arranjo espacial de pixels e seus VB
Uma imagem LANDSAT original, é produzida na escala de 1:1.000.000. Esta imagem não se apresenta como um retângulo, pois durante o tempo em que os dados são tomados (25 segundos), a Terra gira um curto espaço devido ao movimento de rotação, e as linhas de latitude e longitude fazem um certo ângulo com o topo e a base da imagem, originando então uma imagem com a forma de um trapézio.
Figura 2.21 - Formato de uma imagem original
À medida que o satélite se desloca ao longo da órbita, o espelho de varredura oscila perpendicularmente à direção deste deslocamento, proporcionando o imageamento contínuo do terreno. Entretanto, o movimento de rotação provoca um pequeno deslocamento do ponto inicial da varredura para oeste, a cada oscilação do espelho.
Tais distorções geométricas são posteriormente corrigidas nas estações terrestres, como já visto, onde também são criadas as referências marginais das imagens e as informações de rodapé.
O sistema SPOT é um programa espacial francês semelhante ao programa LANDSAT. O primeiro satélite da série SPOT, lançado em fevereiro de 1986, levou a bordo 2 sensores de alta resolução HRV ( High Resolution Visible) com possibilidade de apontamento perpendicular ao deslocamento do satélite.
A altitude da órbita do SPOT é de 832 Km. É uma órbita polar, síncrona com o Sol, mantendo uma inclinação de 98º,7 em relação ao plano do equador. A velocidade orbital é sincronizada com o movimento de rotação da Terra, de forma que a mesma área possa ser imageada a intervalos de 26 dias.
Os sensores HRV foram planejados para operar em dois modos:
- O modo pancromático (preto e branco) que corresponde a observação da cena numa ampla faixa do espectro eletromagnético, permitindo uma resolução espacial de 10 x 10 metros (pixel).
- O modo multiespectral (colorido), corresponde a observação da cena em 3 faixas estritas do espectro, com resolução espacial de 20 x 20 metros (pixel).
Uma das características mais importantes apresentadas pelo satélite SPOT, é a utilização de sensores com ângulos de visada variável e programável através de comandos da estação terrestre, graças ao sistema de visada " off-nadir "
Através deste sistema, durante o período de 26 dias que separa 2 passagens sucessivas sobre uma mesma área, esta poderá ser observada de órbitas adjacentes em 7 diferentes passagens, se localizada no equador. Se a área de interesse estiver localizada nas latitudes médias (45º), a possibilidade de aquisição de dados será aumentada para 11 passagens.
Outra importante possibilidade através da visada " off- nadir " é a aquisição de pares estereoscópicos, proporcionada pelo imageamento de uma mesma área segundo ângulos de visada opostos, obtendo-se assim, uma visão tridimensional do terreno.

Figura 2.22 - Aquisição de dados proporcionado pela visada "off-nadir"
O sistema consiste em um satélite para observações da Terra, os instrumentos e a estação de rastreamento, recepção e processamento de dados.

Figura 2.23 - Componentes do Sistema SPOT
Como visto, o sensoriamento remoto propriamente dito seria o aproveitamento simultâneo das vantagens específicas de cada faixa de comprimento de ondas do espectro eletromagnético. Os sensores, geralmente, podem ser imageadores e não imageadores, sendo os primeiros os que vêm sendo mais estudados e aplicados no campo da Cartografia, especialmente a fotogrametria e a fotointerpretação.
Os estudos não se restringem apenas à porção visível do espectro, indo até as porções infravermelho e das microondas (radar), com diversas aplicações, principalmente na atualização cartográfica.
As imagens podem ser reproduzidas em papel, transparência (diapositivo), meio digital, etc., podendo ser em preto e branco, cores naturais, falsas cores e outras formas que permitem uma variação de estudos cartográficos, ou ainda poderão ser entregues sob a forma de fitas CCTS.
O produto mais usual são imagens obtidas a partir da visada vertical georreferenciadas para a projeção cartográfica desejada.
A utilização experimental de imagens LANDSAT-MSS no mapeamento planimétrico foi iniciada em convênio entre o INPE/DSG. Neste caso, a imagem na esc. 1:250.000 serve como fundo, sendo os temas lançados a seguir, manualmente.
Neste caso, os efeitos do relevo são levados em conta, por meio de um MNT (5) (Modelo Numérico de Terreno, é composto por uma grade regularmente espaçada com as cotas de cada ponto, seu uso permite a inclusão de altitude de cada ponto no modelo de correção) obtido por meio de formação de pares estereoscópicos de imagens.
A utilização de imagens orbitais no mapeamento temático apresenta um grande potencial. Neste caso, a imagem deve ser inicialmente corrigida para a projeção cartográfica desejada. A seguir, por meio de um sistema computacional para processamento de imagem, uma nova imagem é gerada. Esta nova imagem tanto pode ser uma imagem classificada (onde os diversos temas são separados), ou o resultado de algorítmo de combinações entre as diferentes bandas espectrais, por exemplo, as composições coloridas geradas a partir de imagem "razão entre bandas", muito úteis em mapeamento geológico. Finalmente, produz-se um documento cartográfico com a imagem resultante.
Vale ressaltar, para o fim temático, que as imagens LANDSAT-TM apresentam vantagens com relação ao produto SPOT, devido ao maior número de bandas espectrais e maior potencial temático.
As Cartas-imagens são imagens de satélite no formato de folhas de carta. Neste tipo de produto as cenas de satélites são ligadas digitalmente para cobrir a área requisitada, e subseccionadas em unidades de folhas de cartas.
As unidades de folhas de carta são suplementadas por anotações relativas às coordenadas e informações auxiliares que são extraídas de outros mapas ou cartas, para posteriormente serem reproduzidos numa escala média. As Cartas-imagem de satélite são derivadas de imagens dos satélites SPOT e LANDSAT corrigidas com alta precisão geométrica e radiométrica.
Na Carta-imagem de satélite a imagem é produzida em preto e branco a partir de única banda espectral ou a cores a partir da utilização de 3 bandas espectrais. A imagem é realçada por filtragens e métodos estatísticos.
A parte interna de uma carta-imagem de satélite normalmente não contém qualquer outro tipo de informação que não seja o próprio conteúdo da imagem.
O referido produto têm suas aplicações em diferentes áreas de empreendimentos como por exemplo aplicações florestais, Inventário de Recursos Naturais, Planejamento e Gerenciamento do uso da terra, etc.. As vantagens apresentadas por este tipo de produto para a atualização cartográfica são evidentes, especialmente em áreas onde as cartas tradicionais encontram-se desatualizadas ou inexistem.
Cabe aos clientes a especificação da projeção da carta e do elipsóide de referência a ser utilizado. Através de solicitação, poderão ainda ser realizados processamentos suplementares visando realçar as imagens, em benefício de trabalhos de interpretação especializada, como geológico ou de análise da vegetação, por exemplo.
As Cartas-imagens de satélite podem ser apresentadas em escalas padrão, de acordo com as delimitações da latitude/longitude ou X/Y.
Noções Básicas de Cartografia

II - REPRESENTAÇÃO CARTOGRÁFICA
1 - TIPOS DE REPRESENTAÇÃO
1.1 - POR TRAÇO

GLOBO - representação cartográfica sobre uma superfície esférica, em escala pequena, dos aspectos naturais e artificiais de uma figura planetária, com finalidade cultural e ilustrativa.

MAPA (Características):
- representação plana;
- geralmente em escala pequena;
- área delimitada por acidentes naturais (bacias, planaltos, chapadas, etc.), político-administrativos;
- destinação a fins temáticos, culturais ou ilustrativos. 
A partir dessas características pode-se generalizar o conceito:

" Mapa é a representação no plano, normalmente em escala pequena, dos aspectos geográficos, naturais, culturais e artificiais de uma área tomada na superfície de uma Figura planetária, delimitada por elementos físicos, político-administrativos, destinada aos mais variados usos, temáticos, culturais e ilustrativos."
CARTA (Características):
- representação plana;
- escala média ou grande;
- desdobramento em folhas articuladas de maneira sistemática;
- limites das folhas constituídos por linhas convencionais, destinada à avaliação precisa de direções, distâncias e localização de pontos, áreas e detalhes.
Da mesma forma que da conceituação de mapa, pode-se generalizar:

" Carta é a representação no plano, em escala média ou grande, dos aspectos artificiais e naturais de uma área tomada de uma superfície planetária, subdividida em folhas delimitadas por linhas convencionais - paralelos e meridianos - com a finalidade de possibilitar a avaliação de pormenores, com grau de precisão compatível com a escala."

PLANTA - a planta é um caso particular de carta. A representação se restringe a uma área muito limitada e a escala é grande, consequentemente o nº de detalhes é bem maior.

"Carta que representa uma área de extensão suficientemente restrita para que a sua curvatura não precise ser levada em consideração, e que, em consequência, a escala possa ser considerada constante."

1.2 - POR IMAGEM
MOSAICO - é o conjunto de fotos de uma determinada área, recortadas e montadas técnica e artísticamente, de forma a dar a impressão de que todo o conjunto é uma única fotografia. Classifica-se em:

- controlado - é obtido a partir de fotografias aéreas submetidas a processos específicos de correção de tal forma que a imagem resultante corresponda exatamente a imagem no instante da tomada da foto. Essas fotos são então montadas sobre uma prancha, onde se encontram plotados um conjunto de pontos que servirão de controle à precisão do mosaico. Os pontos lançados na prancha tem que ter o correspondente na imagem. Esse mosaico é de alta precisão.

- não-controlado - é preparado simplesmente através do ajuste de detalhes de fotografias adjacentes. Não existe controle de terreno e as fotografias não são corrigidas. Esse tipo de mosaico é de montagem rápida, mas não possui nenhuma precisão. Para alguns tipos de trabalho ele satisfaz plenamente.

- semicontrolado - são montados combinando-se características do mosaico controlado e do não controlado. Por exemplo, usando-se controle do terreno com fotos não corrigidas; ou fotos corrigidas, mas sem pontos de controle.

FOTOCARTA - é um mosaico controlado, sobre o qual é realizado um tratamento cartográfico (planimétrico).

ORTOFOTOCARTA - é uma ortofotografia - fotografia resultante da transformação de uma foto original, que é uma perspectiva central do terreno, em uma projeção ortogonal sobre um plano - complementada por símbolos, linhas e georreferenciada, com ou sem legenda, podendo conter informações planimétricas.

ORTOFOTOMAPA - é o conjunto de várias ortofotocartas adjacentes de uma determinada região.

FOTOÍNDICE - montagem por superposição das fotografias, geralmente em escala reduzida. É a primeira imagem cartográfica da região. O fotoíndice é insumo necessário para controle de qualidade de aerolevantamentos utilizados na produção de cartas através do método fotogramétrico. Normalmente a escala do fotoíndice é reduzida de 3 a 4 vezes em relação a escala de vôo.

CARTA IMAGEM - Imagem referenciada a partir de pontos identificáveis e com coordenadas conhecidas, superposta por reticulado da projeção, podendo conter simbologia e toponímia.

2 - ESCALA
2.1 - INTRODUÇÃO
Uma carta ou mapa é a representação convencional ou digital da configuração da superfície topográfica.
Esta representação consiste em projetarmos esta superfície, com os detalhes nela existentes, sobre um plano horizontal ou em arquivos digitais.
Os detalhes representados podem ser:
- Naturais: São os elementos existentes na natureza como os rios, mares, lagos, montanhas, serras, etc.
- Artificiais: São os elementos criados pelo homem como: represas, estradas, pontes, edificações, etc.
Uma carta ou mapa, dependendo dos seus objetivos, só estará completa se trouxer esses elementos devidamente representados.
Esta representação gera dois problemas:
1º) A necessidade de reduzir as proporções dos acidentes à representar, a fim de tornar possível a representação dos mesmos em um espaço limitado.
Essa proporção é chamada de ESCALA
2º) Determinados acidentes, dependendo da escala, não permitem uma redução acentuada, pois tornar-se-iam imperceptíveis, no entanto são acidentes que por usa importância devem ser representados nos documentos cartográficos

A solução é a utilização de símbolos cartográficos.

2.2 - DEFINIÇÃO
Escala é a relação entre a medida de um objeto ou lugar representado no papel e sua medida real.
Duas figuras semelhantes têm ângulos iguais dois a dois e lados homólogos proporcionais.
Verifica-se portanto, que será sempre possível, através do desenho geométrico obter-se figuras semelhantes às do terreno.
Sejam:

D = um comprimento tomado no terreno, que denominar-se-á distância real natural.

d = um comprimento homólogo no desenho, denominado distância prática.
Como as linhas do terreno e as do desenho são homólogas, o desenho que representa o terreno é uma Figura semelhante a dele, logo, a razão ou relação de semelhança é a seguinte:

D
A esta relação denomina-se ESCALA.
Assim:

Escala é definida como a relação existente entre as dimensões das linhas de um desenho e as suas homólogas.
A relação d/D pode ser maior, igual ou menor que a unidade, dando lugar à classificação das escalas quanto a sua natureza, em três categorias:
- Na 1ª, ter-se-á d > D
- Na 2ª, ter-se-á d = D
- Na 3ª categoria, que é a usada em Cartografia, a distância gráfica é menor que a real, ou seja, d < D.
É a escala de projeção menor, empregada para reduções, em que as dimensões no desenho são menores que as naturais ou do modelo.

2.3 - ESCALA NUMÉRICA
Indica a relação entre os comprimentos de uma linha na carta e o correspondente comprimento no terreno, em forma de fração com a unidade para numerador.
 
Sendo:
E = escala
N = denominador da escala
d = distância medida na carta
D = distância real (no terreno)
As escalas mais comuns têm para numerador a unidade e para denominador, um múltiplo de 10.
Isto significa que 1cm na carta corresponde a 25.000 cm ou 250 m, no terreno.
OBS: Uma escala é tanto maior quanto menor for o denominador.
Ex: 1:50.000 é maior que 1:100.000

2.3.1 - PRECISÃO GRÁFICA
É a menor grandeza medida no terreno, capaz de ser representada em desenho na mencionada Escala.
A experiência demonstrou que o menor comprimento gráfico que se pode representar em um desenho é de 1/5 de milímetro ou 0,2 mm, sendo este o erro admissível.
Fixado esse limite prático, pode-se determinar o erro tolerável nas medições cujo desenho deve ser feito em determinada escala. O erro de medição permitido será calculado da seguinte forma:
O erro tolerável, portanto, varia na razão direta do denominador da escala e inversa da escala, ou seja, quanto menor for a escala, maior será o erro admissível.
Os acidentes cujas dimensões forem menores que os valores dos erros de tolerância, não serão representados graficamente. Em muitos casos é necessário utilizar-se convenções cartográficas, cujos símbolos irão ocupar no desenho, dimensões independentes da escala.

2.3.2 - ESCOLHA DE ESCALAS
Considerando uma região da superfície da Terra que se queira mapear e que possua muitos acidentes de 10m de extensão, a menor escala que se deve adotar para que esses acidentes tenham representação será:
A escala adotada deverá ser igual ou maior que l:50.000
Na escala 1:50.000, o erro prático (0,2 mm ou 1/5 mm) corresponde a 10 m no terreno. Verifica-se então que multiplicando 10 x 5.000 encontrar-se-á 50.000, ou seja, o denominador da escala mínima para que os acidentes com 10m de extensão possam ser representadas.

2.4 - ESCALA GRÁFICA
É a representação gráfica de várias distâncias do terreno sobre uma linha reta graduada.
É constituída de um segmento à direita da referência zero, conhecida como escala primária.
Consiste também de um segmento à esquerda da origem denominada de Talão ou escala de fracionamento, que é dividido em sub-múltiplos da unidade escolhida graduadas da direita para a esquerda.
A Escala Gráfica nos permite realizar as transformações de dimensões gráficas em dimensões reais sem efetuarmos cálculos. Para sua construção, entretanto, torna-se necessário o emprego da escala numérica.
O seu emprego consiste nas seguintes operações:
1º) Tomamos na carta a distância que pretendemos medir (pode-se usar um compasso).
2º) Transportamos essa distância para a Escala Gráfica.
3º) Lemos o resultado obtido.


Muitas vezes, durante o trancorrer de alguns trabalhos cartográficos, faz-se necessário unir cartas ou mapas em escalas diferentes a fim de compatibiliza-los em um único produto. Para isso é necessário reduzir alguns e ampliar outros.
Para transformação de escala existem alguns métodos:
- Quadriculado
- Triângulos semelhantes
- Pantógrafo: Paralelograma articulado tendo em um dos pólos uma ponta seca e no outro um lápis, o qual vai traçar a redução ou ampliação do detalhe que percorremos com a ponta seca.
- Fotocartográfico: Através de uma câmara fotogramétrica de precisão, na qual podemos efetuar regulagens que permitem uma redução ou ampliação em proporções rigorosas. Tem como vantagem a precisão e rapidez.
- Digital: por ampliação ou redução em meio digital diretamente.
Como em cartografia trabalha-se com a maior precisão possível, só os métodos fotocartográfico e digital devem ser utilizados, ressaltando que a ampliação é muito mais susceptível de erro do que a redução, no entanto reduções grandes poderão gerar a fusão de linhas e demais componentes de uma carta (coalescência) que deverão ser retiradas.
A escala numérica refere-se a medidas lineares. Ela indica quantas vezes foi ampliada ou reduzida uma distância.
Quando nos referimos à superfície usamos a escala de área, podendo indicar quantas vezes foi ampliada ou reduzida uma área.
Enquanto a distância em uma redução linear é indicada pelo denominador da fração, a área ficará reduzida por um número de vezes igual ao quadrado do denominador dessa fração.
A confecção de uma carta exige, antes de tudo, o estabelecimento de um método, segundo o qual, a cada ponto da superfície da Terra corresponda um ponto da carta e vice-versa.
Diversos métodos podem ser empregados para se obter essa correspondência de pontos, constituindo os chamados "sistemas de projeções".
A teoria das projeções compreende o estudo dos diferentes sistemas em uso, incluindo a exposição das leis segundo as quais se obtêm as interligações dos pontos de uma superfície (Terra) com os da outra (carta).
São estudados também os processos de construção de cada tipo de projeção e sua seleção, de acordo com a finalidade em vista.
O problema básico das projeções cartográficas é a representação de uma superfície curva em um plano. Em termos práticos, o problema consiste em se representar a Terra em um plano. Como vimos, a forma de nosso planeta é representada, para fins de mapeamento, por um elipsóide (ou por uma esfera, conforme seja a aplicação desejada) que é considerada a superfície de referência a qual estão relacionados todos os elementos que desejamos representar (elementos obtidos através de determinadas tipos de levantamentos).
Podemos ainda dizer que não existe nenhuma solução perfeita para o problema, e isto pode ser rapidamente compreendido se tentarmos fazer coincidir a casca de uma laranja com a superfície plana de uma mesa. Para alcançar um contato total entre as duas superfícies, a casca de laranja teria que ser distorcida. Embora esta seja uma simplificação grosseira do problema das projeções cartográficas, ela expressa claramente a impossibilidade de uma solução perfeita (projeção livre de deformações). Poderíamos então, questionar a validade deste modelo de representação já que seria possível construir representações tridimensionais do elipsóide ou da esfera, como é o caso do globo escolar, ou ainda expressá-lo matemáticamente, como fazem os geodesistas. Em termos teóricos esta argumentação é perfeitamente válida e o desejo de se obter uma representação sobre uma superfície plana é de mera conveniência. Existem algumas razões que justificam esta postura, e as mais diretas são: o mapa plano é mais fácil de ser produzido e manuseado.
Podemos dizer que todas as representações de superfícies curvas em um plano envolvem: "extensões" ou "contrações" que resultam em distorções ou "rasgos". Diferentes técnicas de representação são aplicadas no sentido de se alcançar resultados que possuam certas propriedades favoráveis para um propósito específico.
A construção de um sistema de projeção será escolhido de maneira que a carta venha a possuir propriedades que satisfaçam as finalidades impostas pela sua utilização.
O ideal seria construir uma carta que reunisse todas as propriedades, representando uma superfície rigorosamente semelhante à superfície da Terra. Esta carta deveria possuir as seguintes propriedades:
1- Manutenção da verdadeira forma das áreas a serem representadas (conformidade).
2- Inalterabilidade das áreas (equivalência).
3- Constância das relações entre as distâncias dos pontos representados e as distâncias dos seus correspondentes (equidistância).
Essas propriedades seriam facilmente conseguidas se a superfície da Terra fosse plana ou uma superfície desenvolvível. Como tal não ocorre, torna-se impossível a construção da carta ideal, isto é, da carta que reunisse todas as condições desejadas
A solução será, portanto, construir uma carta que, sem possuir todas as condições ideais, possua aquelas que satisfaçam a determinado objetivo. Assim, é necessário ao se fixar o sistema de projeção escolhido considerar a finalidade da carta que se quer construir.
Em Resumo:
As representações cartográficas são efetuadas, na sua maioria, sobre uma superfície plana (Plano de Representação onde se desenha o mapa). O problema básico consiste em relacionar pontos da superfície terrestres ao plano de representação. Isto compreende as seguintes etapas:
1º) Adoção de um modelo matemático da terra (Geóide) simplificado. Em geral, esfera ou elipsóide de revolução;
2º) Projetar todos os elementos da superfície terrestre sobre o modelo escolhido. (Atenção: tudo o que se vê num mapa corresponde à superfície terrestre projetada sobre o nível do mar aproximadamente);
3º) Relacionar por processo projetivo ou analítico pontos do modelo matemático com o plano de representação escolhendo-se uma escala e sistema de coordenadas.
Antes de entrarmos nas técnicas de representação propriamente ditas, introduziremos alguns Sistemas de Coordenadas utilizados na representação cartográfica.

3.1.1 - CONSTRUÇÃO DO SISTEMA DE COORDENADAS

Os sistemas de coordenadas são necessários para expressar a posição de pontos sobre uma superfície, seja ela um elipsóide, esfera ou um plano. É com base em determinados sistemas de coordenadas que descrevemos geometricamente a superfície terrestre nos levantamentos referidos no capítulo I. Para o elipsóide, ou esfera, usualmente empregamos um sistema de coordenadas cartesiano e curvilíneo (PARALELOS e MERIDIANOS). Para o plano, um sistema de coordenadas cartesianas X e Y é usualmente aplicável.
Para amarrar a posição de um ponto no espaço necessitamos ainda complementar as coordenadas bidimensionais que apresentamos no parágrafo anterior, com uma terceira coordenada que é denominada ALTITUDE. A altitude de um ponto qualquer está ilustrada na fig .2.1-a, onde o primeiro tipo (h) é a distância contada a partir do geóide (que é a superfície de referência para contagem das altitudes) e o segundo tipo (H), denominado ALTITUDE GEOMÉTRICA é contada a partir da superfície do elipsóide.

Figura 2.1- Sistemas de coordenadas

3.1.2 - MERIDIANOS E PARALELOS

MERIDIANOS - São círculos máximos que, em conseqüência, cortam a TERRA em duas partes iguais de pólo a pólo. Sendo assim, todos os meridianos se cruzam entre si, em ambos os pólos. O meridiano de origem é o de GREENWICH (0º).(2)
PARALELOS - São círculos que cruzam os meridianos perpendicularmente, isto é, em ângulos retos. Apenas um é um círculo máximo, o Equador (0º). Os outros, tanto no hemisfério Norte quanto no hemisfério Sul, vão diminuindo de tamanho à proporção que se afastam do Equador, até se transformarem em cada pólo, num ponto (90º). (Figura 2.2)
a) no elipsóide de revolução
PN - Pólo Norte
PS - Pólo Sul

Figura 2.2 - Paralelos e Meridianos

(2) Meridiano Internacional de Referência, escolhido em Bonn, Alemanha, durante a Conferência Técnica das Nações Unidas para a Carta Internacional do Mundo ao milionésimo, como origem da contagem do meridiano.
LATITUDE GEOGRÁFICA ( j )
É o arco contado sobre o meridiano do lugar e que vai do Equador até o lugar considerado.
A latitude quando medida no sentido do pólo Norte é chamada Latitude Norte ou Positiva. Quando medida no sentido Sul é chamada Latitude Sul ou Negativa.
Sua variação é de: 0º a 90º N ou 0º a + 90º;
                           0º a 90º S ou 0º a - 90º
LONGITUDE GEOGRÁFICA ( l )
É o arco contado sobre o Equador e que vai de GREENWICH até o Meridiano do referido lugar.
A Longitude pode ser contada no sentido Oeste, quando é chamada LONGITUDE OESTE DE GREENWICH (W Gr.) ou NEGATIVA. Se contada no sentido Este, é chamada LONGITUDE ESTE DE GREENWICH (E Gr.) ou POSITIVA.
A Longitude varia de: 0º a 180º W Gr. ou 0º a - 180º;
                               0º a 180º E Gr. ou 0º a + 180º .

Figura 2.3 - Latitude e Longitude
LATITUDE GEODÉSICA ( j )
É o ângulo formado pela normal ao elipsóide de um determinado ponto e o plano do Equador.
LONGITUDE GEODÉSICA ( l )
É o ângulo formado pelo plano meridiano do lugar e o plano meridiano tomado como origem (GREENWICH). (Figura 2.1.a)



a) Geométricas - baseiam-se em princípios geométricos projetivos. Podem ser obtidos pela interseção, sobre a superfície de projeção, do feixe de retas que passa por pontos da superfície de referência partindo de um centro perspectivo (ponto de vista).

b) Analíticas - baseiam-se em formulação matemática obtidas com o objetivo de se atender condições (características) préviamente estabelecidas (é o caso da maior parte das projeções existentes).


a) Planas - este tipo de superfície pode assumir três posições básicas em relação a superfície de referência: polar, equatorial e oblíqua (ou horizontal) (Figura 2.4).

b) Cônicas - embora esta não seja uma superfície plana, já que a superfície de projeção é o cone, ela pode ser desenvolvida em um plano sem que haja distorções (Figura 2.5), e funciona como superfície auxiliar na obtenção de uma representação. A sua posição em relação à superfície de referência pode ser: normal, transversal e oblíqua (ou horizontal) (Figura 2.4).

c) Cilíndricas - tal qual a superfície cônica, a superfície de projeção que utiliza o cilindro pode ser desenvolvida em um plano (Figura 2.5) e suas possíveis posições em relação a superfície de referência podem ser: equatorial, transversal e oblíqua (ou horizontal) (Figura 2.4).

d) Polissuperficiais - se caracterizam pelo emprego de mais do que uma superfície de projeção (do mesmo tipo) para aumentar o contato com a superfície de referência e, portanto, diminuir as deformações (plano-poliédrica ; cone-policônica ; cilindro-policilíndrica).

Figura .2.5 - Superfícies de Projeção desenvolvidas em um plano.

Na impossibilidade de se desenvolver uma superfície esférica ou elipsóidica sobre um plano sem deformações, na prática, buscam-se projeções tais que permitam diminuir ou eliminar parte das deformações conforme a aplicação desejada. Assim, destacam-se:

a) Eqüidistantes - As que não apresentam deformações lineares para algumas linhas em especial, isto é, os comprimentos são representados em escala uniforme.

b) Conformes - Representam sem deformação, todos os ângulos em torno de quaisquer pontos, e decorrentes dessa propriedade, não deformam pequenas regiões.

c) Equivalentes - Têm a propriedade de não alterarem as áreas, conservando assim, uma relação constante com as suas correspondentes na superfície da Terra. Seja qual for a porção representada num mapa, ela conserva a mesma relação com a área de todo o mapa.

d) Afiláticas - Não possui nenhuma das propriedades dos outros tipos, isto é, equivalência, conformidade e eqüidistância, ou seja, as projeções em que as áreas, os ângulos e os comprimentos não são conservados.
As propriedades acima descritas são básicas e mutuamente exclusivas. Elas ressaltam mais uma vez que não existe uma representação ideal, mas apenas a melhor representação para um determinado propósito.


a) Tangentes - a superfície de projeção é tangente à de referência (plano- um ponto; cone e cilindro- uma linha).
b) Secantes - a superfície de projeção secciona a superfície de referência (plano- uma linha; cone- duas linhas desiguais; cilindro- duas linhas iguais) (Figura 2.6).
Através da composição das diferentes características apresentadas nesta classificação das projeções cartográficas, podemos especificar representações cartográficas cujas propriedades atendam as nossas necessidades em cada caso específico.

Figura 2.6 - Superfícies de projeção secantes
- Superfície de representação: diversos cones
- Não é conforme nem equivalente (só tem essas características próxima ao Meridiano Central).
- O Meridiano Central e o Equador são as únicas retas da projeção. O MC é dividido em partes iguais pelos paralelos e não apresenta deformações.
- Os paralelos são círculos não concêntricos (cada cone tem seu próprio ápice) e não apresentam deformações.
- Os meridianos são curvas que cortam os paralelos em partes iguais.
- Pequena deformação próxima ao centro do sistema, mas aumenta rapidamente para a periferia.
Aplicações: Apropriada para uso em países ou regiões de extensão predominantemente Norte-Sul e reduzida extensão Este-Oeste.
É muito popular devido à simplicidade de seu cálculo pois existem tabelas completas para sua construção.
É amplamente utilizada nos EUA.
No BRASIL é utilizada em mapas da série Brasil, regionais, estaduais e temáticos.

Figura 2.7 - Projeção Policônica
- Cônica.
- Conforme.
- Analítica.
- Secante.
- Os meridianos são linhas retas convergentes.
- Os paralelos são círculos concêntricos com centro no ponto de interseção dos meridianos.
Aplicações: A existência de duas linhas de contato com a superfície (dois paralelos padrão) nos fornece uma área maior com um baixo nível de deformação. Isto faz com que esta projeção seja bastante útil para regiões que se estendam na direção este-oeste, porém pode ser utilizada em quaisquer latitudes.
A partir de 1962, foi adotada para a Carta Internacional do Mundo, ao Milionésimo.

Figura 2.8 - Projeção Cônica Normal de Lambert (com dois paralelos-padrão)
- Cilíndrica.
- Conforme.
- Analítica.
- Tangente (a um meridiano).
- Os meridianos e paralelos não são linhas retas, com exceção do meridiano de tangência e do Equador.
- Aplicações: Indicada para regiões onde há predominância na extensão Norte-Sul. É muito utilizada em cartas destinadas à navegação.

Figura 2.9 - Projeção Cilíndrica Transversa de Mercartor
- Cilíndrica.
- Conforme.
- Secante.
- Só o Meridiano Central e o Equador são linhas retas.
- Projeção utilizada no SISTEMA UTM - Universal Transversa de Mercator desenvolvido durante a 2ª Guerra Mundial. Este sistema é, em essência, uma modificação da Projeção Cilíndrica Transversa de Mercator.
Aplicações: Utilizado na produção das cartas topográficas do Sistema Cartográfico Nacional produzidas pelo IBGE e DSG.

Figura 2.10 - Cilindro secante
1) O mundo é dividido em 60 fusos, onde cada um se estende por 6º de longitude. Os fusos são numerados de um a sessenta começando no fuso 180º a 174º W Gr. e continuando para este. Cada um destes fusos é gerado a partir de uma rotação do cilindro de forma que o meridiano de tangência divide o fuso em duas partes iguais de 3º de amplitude (Figura 2.11).
2) O quadriculado UTM está associado ao sistema de coordenadas plano-retangulares, tal que um eixo coincide com a projeção do Meridiano Central do fuso (eixo N apontando para Norte) e o outro eixo, com o do Equador. Assim cada ponto do elipsóide de referência (descrito por latitude, longitude) estará biunivocamente associado ao terno de valores Meridiano Central, coordenada E e coordenada N.
3) Avaliando-se a deformação de escala em um fuso UTM (tangente), pode-se verificar que o fator de escala é igual a 1(um) no meridiano central e aproximadamente igual a 1.0015 (1/666) nos extremos do fuso. Desta forma, atribuindo-se a um fator de escala k = 0,9996 ao meridiano central do sistema UTM (o que faz com que o cilindro tangente se torne secante), torna-se possível assegurar um padrão mais favorável de deformação em escala ao longo do fuso. O erro de escala fica limitado a 1/2.500 no meridiano central, e a 1/1030 nos extremos do fuso (Figura 2.12).
4) A cada fuso associamos um sistema cartesiano métrico de referência, atribuindo à origem do sistema (interseção da linha do Equador com o meridiano central) as coordenadas 500.000 m, para contagem de coordenadas ao longo do Equador, e 10.000.000 m ou 0 (zero) m, para contagem de coordenadas ao longo do meridiano central, para os hemisfério sul e norte respectivamente. Isto elimina a possibilidade de ocorrência de valores negativos de coordenadas.
5) Cada fuso deve ser prolongado até 30' sobre os fusos adjacentes criando-se assim uma área de superposição de 1º de largura. Esta área de superposição serve para facilitar o trabalho de campo em certas atividades.
6) O sistema UTM é usado entre as latitudes 84º N e 80º S.
Além desses paralelos a projeção adotada mundialmente é a Estereográfica Polar Universal.
Aplicações: Indicada para regiões de predominância na extensão Norte-Sul entretanto mesmo na representação de áreas de grande longitude poderá ser utilizada.
É a mais indicada para o mapeamento topográfico a grande escala, e é o Sistema de Projeção adotado para o Mapeamento Sistemático Brasileiro.
O sistema de coordenadas geodésicas ou o UTM permite o posicionamento de qualquer ponto sobre a superfície da Terra, no entanto é comum se desejar posicionamento relativo de direção nos casos de navegação. Assim, ficam definidos três vetores associados a cada ponto:
Norte Verdadeiro ou de Gauss - Com direção tangente ao meridiano (geodésico) passante pelo ponto e apontado para o Polo Norte.
Norte Magnético - Com direção tangente à linha de força do campo magnético passante pelo ponto e apontado para o Polo Norte Magnético.
OBS.: Devido à significativa variação da ordem de minutos de arco anualmente deste pólo ao longo dos anos, torna-se necessária a correção do valor constantes da carta/mapa para a data do posicionamento desejado.
Norte da Quadrícula - Com direção paralela ao eixo N (que coincide com o Meridiano Central do fuso) do Sistema de Projeção UTM no ponto considerado e apontado para o Norte (sentido positivo de N)
Azimute: É o ângulo formado entre a direção Norte-Sul e a direção considerada, contado a partir do Pólo Norte, no sentido horário. O Azimute varia de 0º a 360º e dependendo do Norte ao qual esteja a referenciado podemos ter:
- Azimute Verdadeiro ou de Gauss ( Az G AB )
- Azimute da Quadrícula ( Az Q AB )
- Azimute Magnético ( Az M AB )
OBS.: O azimute Geodésico corresponde ao Azimute Verdadeiro contato a partir do Polo Sul.
Contra-azimute: Contra-Azimute de uma direção é o Azimute da direção inversa.
Declinação Magnética ( d ): É o ângulo formado entre os vetores Norte Verdadeiro e o Norte Magnético associado a um ponto.
Convergência Meridiana Plana ( g ): É o ângulo formado entre os vetores Norte Verdadeiro e o Norte da Quadrícula associado a um ponto.
No sistema UTM, a Convergência Meridiana Plana cresce com a latitude e com o afastamento do Meridiano Central (MC).
No hemisfério Norte ela é positiva a Este do MC e negativa a Oeste do MC.
No hemisfério Sul ela é negativa a Este do MC e positiva a Oeste do MC.
Rumo: É o menor ângulo que uma direção faz com a Direção Norte- Sul.
Após o valor do rumo deve ser indicado o quadrante geográfico a que o mesmo pertence, ou seja: NO, NE, SO ou SE.
OBS: Como os azimutes, os rumos, dependendo do norte ao qual são referenciados podem ser: Rumo verdadeiro, da quadrícula ou magnético.
Contra-rumo: É o rumo da direção inversa.
Quanto à natureza da representação:
                CADASTRAL - Até 1:25.000
a) GERAL   TOPOGRÁFICA - De 1:25.000 até 1:250.000
                GEOGRÁFICA - 1:1:000.000 e menores
                                    (1:2.500.000, 1:5.000.000 até 1:30.000.000)
b) TEMÁTICA
c) ESPECIAL
São documentos cartográficos elaborados sem um fim específico. A finalidade é fornecer ao usuário uma base cartográfica com possibilidades de aplicações generalizadas, de acordo com a precisão geométrica e tolerâncias permitidas pela escala.
Apresentam os acidentes naturais e artificiais e servem, também, de base para os demais tipos de cartas.
Representação em escala grande, geralmente planimétrica e com maior nível de detalhamento, apresentando grande precisão geométrica. Normalmente é utilizada para representar cidades e regiões metropolitanas, nas quais a densidade de edificações e arruamento é grande.
As escalas mais usuais na representação cadastral, são: 1:1.000, 1:2.000, 1:5.000, 1:10.000 e 1:15.000.
Mapa de Localidade - Denominação utilizada na Base Territorial dos Censos para identificar o conjunto de plantas em escala cadastral, que compõe o mapeamento de uma localidade (região metropolitana, cidade ou vila).
Carta elaborada a partir de levantamentos aerofotogramétrico e geodésico original ou compilada de outras cartas topográficas em escalas maiores. Inclui os acidentes naturais e artificiais, em que os elementos planimétricos (sistema viário, obras, etc.) e altimétricos (relevo através de curvas de nível, pontos colados, etc.) são geometricamente bem representados.
As aplicações das cartas topográficas variam de acordo com sua escala:
1:25.000 - Representa cartograficamente áreas específicas, com forte densidade demográfica, fornecendo elementos para o planejamento socioeconômico e bases para anteprojetos de engenharia. Esse mapeamento, pelas características da escala, está dirigido para as áreas das regiões metropolitanas e outras que se definem pelo atendimento a projetos específicos. Cobertura Nacional: 1,01%.
1:50.000 - Retrata cartograficamente zonas densamente povoadas, sendo adequada ao planejamento socioeconômico e à formulação de anteprojetos de engenharia.
A sua abrangência é nacional, tendo sido cobertos até agora 13,9% do Território Nacional, concentrando-se principalmente nas regiões Sudeste e Sul do país.
1:100.000 - Objetiva representar as áreas com notável ocupação, priorizadas para os INVESTIMENTOS governamentais, em todos os níveis de governo- Federal, Estadual e Municipal.
A sua abrangência é nacional, tendo sido coberto até agora 75,39% do Território Nacional.
1:250.000 - Subsidia o planejamento regional, além da elaboração de estudos e projetos que envolvam ou modifiquem o meio ambiente.
A sua abrangência é nacional, tendo sido coberto até o momento 80,72% do Território Nacional.
Mapa Municipal : Entre os principais produtos cartográficos produzidos pelo IBGE encontra-se o mapa municipal, que é a representação cartográfica da área de um município, contendo os limites estabelecidos pela Divisão Político-Administrativa, acidentes naturais e artificiais, toponímia, rede de coordenadas geográficas e UTM, etc..
Esta representação é elaborada a partir de bases cartográficas mais recentes e de documentos cartográficos auxiliares, na escala das referidas bases.
O mapeamento dos municípios brasileiros é para fins de planejamento e gestão territorial e em especial para dar suporte as atividades de coleta e disseminação de pesquisas do IBGE.
Carta em que os detalhes planimétricos e altimétricos são generalizados, os quais oferecem uma precisão de acordo com a escala de publicação. A representação planimétrica é feita através de símbolos que ampliam muito os objetos correspondentes, alguns dos quais muitas vezes têm que ser bastante deslocados.
A representação altimétrica é feita através de curvas de nível, cuja equidistância apenas dá uma idéia geral do relevo e, em geral, são empregadas cores hipsométricas. São elaboradas na escala. 1:500.000 e menores, como por exemplo a Carta Internacional do Mundo ao Milionésimo (CIM).
Mapeamento das Unidades Territoriais : Representa, a partir do mapeamento topográfico, o espaço territorial brasileiro através de mapas elaborados especificamente para cada unidade territorial do país.
Produtos gerados:-Mapas do Brasil (escalas 1:2.500.000,1:5.000.000,1:10.000.000, etc.).
-Mapas Regionais (escalas geográficas diversas).
-Mapas Estaduais (escalas geográficas e topográficas diversas).
São as cartas, mapas ou plantas em qualquer escala, destinadas a um tema específico, necessária às pesquisas socioeconômicas, de recursos naturais e estudos ambientais. A representação temática, distintamente da geral, exprime conhecimentos particulares para uso geral.
Com base no mapeamento topográfico ou de unidades territoriais, o mapa temático é elaborado em especial pelos Departamentos da Diretoria de Geociências do IBGE, associando elementos relacionados às estruturas territoriais, à geografia, à estatística, aos recursos naturais e estudos ambientais.
Principais produtos: -Cartogramas temáticos das áreas social, econômica territorial,etc.
-Cartas do levantamento de recursos naturais (volumes RADAM).
-Mapas da série Brasil 1:5.000.000 (Escolar, Geomorfológico, Vegetação, Unidades de Relevo, Unidades de Conservação Federais).
- Atlas nacional, regional e estadual.
São as cartas, mapas ou plantas para grandes grupos de usuários muito distintos entre si, e cada um deles, concebido para atender a uma determinada faixa técnica ou científica. São documentos muito específicos e sumamente técnicos que se destinam à representação de fatos, dados ou fenômenos típicos, tendo assim, que se cingir rigidamente aos métodos e objetivos do assunto ou atividade a que está ligado. Por exemplo: Cartas náuticas, aeronáuticas, para fins militares, mapa magnético, astronômico, meteorológico e outros.
Náuticas: Representa as profundidades, a natureza do fundo do mar, as curvas batimétricas, bancos de areia, recifes, faróis, boias, as marés e as correntes de um determinado mar ou áreas terrestres e marítimas.
Elaboradas de forma sistemática pela Diretoria de Hidrografia e Navegação - DHN, do Ministério da Marinha. O Sistema Internacional exige para a navegação marítima, seja de carga ou de passageiros, que se mantenha atualizado o mapeamento do litoral e hidrovias.
Aeronáuticas: Representação particularizada dos aspectos cartográficos do terreno, ou parte dele, destinada a apresentar além de aspectos culturais e hidrográficos, informações suplementares necessárias à navegação aérea, pilotagem ou ao planejamento de operações aéreas.
Para fins militares: Em geral, são elaboradas na escala 1:25.000, representando os acidentes naturais do terreno, indispensáveis ao uso das forças armadas. Pode representar uma área litorânea características topográficas e náuticas, a fim de que ofereça a máxima utilidade em operações militares, sobretudo no que se refere a operações anfíbias.
Fornece subsídios para a execução de estudos e análises de aspectos gerais e estratégicos, no nível continental. Sua abrangência é nacional, contemplando um conjunto de 46 cartas.
É uma representação de toda a superfície terrestre, na projeção cônica conforme de LAMBERT (com 2 paralelos padrão) na escala de 1:1.000.000.
A distribuição geográfica das folhas ao Milionésimo foi obtida com a divisão do planeta (representado aqui por um modelo esférico) em 60 fusos de amplitude 6º, numerados a partir do fuso 180º W - 174º W no sentido Oeste-Leste (Figura 2.13). Cada um destes fusos por sua vez estão divididos a partir da linha do Equador em 21 zonas de 4º de amplitude para o Norte e com o mesmo número para o Sul.
Como o leitor já deve ter observado, a divisão em fusos aqui apresentada é a mesma adotada nas especificações do sistema UTM. Na verdade, o estabelecimento daquelas especificações é pautado nas características da CIM.
Cada uma das folhas ao Milionésimo pode ser acessada por um conjunto de três caracteres:
1º) letra N ou S - indica se a folha está localizada ao Norte ou a Sul do Equador.
2º) letras A até U - cada uma destas letras se associa a um intervalo de 4º de latitude se desenvolvendo a Norte e a Sul do Equador e se prestam a indicação da latitude limite da folha (3).
3º) números de 1 a 60 - indicam o número de cada fuso que contém a folha.
OBS: O Território Brasileiro é coberto por 08 (oito) fusos. (Figura 2.14)

(3) Além das zonas de A a U, temos mais duas que abrangem os paralelos de 84º a 90º. A saber: a zona V que é limitada pelos paralelos 84º e 88º e a zona Z, ou polar, que vai deste último até 90º. Neste intervalo, que corresponde as regiões Polares, a Projeção de Lambert não atende convenientemente a sua representação. Utiliza-se então a Projeção Estereográfica Polar.

Figura 2.13 - Carta Internacional do Mundo ao Milionésimo

Figura 2.14 - O Brasil dividido em fusos de 6º

Este índice tem origem nas folhas ao Milionésimo, e se aplica a denominação de todas as folhas de cartas do mapeamento sistemático (escalas de 1:1.000.000 a 1:25.000).
A Figura 2.15 apresenta a referida nomenclatura.
Para escalas maiores que 1:25.000 ainda não existem normas que regulamentem o código de nomenclatura. O que ocorre na maioria das vezes é que os órgãos produtores de cartas ou plantas nessas escalas adotam seu próprio sistema de articulação de folhas, o que dificulta a interligação de documentos produzidos por fontes diferentes.
Existem dois sistemas de articulação de folhas que foram propostos por órgãos envolvidos com a produção de documentos cartográficos em escalas grandes:
O primeiro, proposto e adotado pela Diretoria de Eletrônica e Proteção ao vôo (e também adotado pela COCAR), se desenvolve a partir de uma folha na escala 1:100.000 até uma folha na escala 1:500.
O segundo, elaborado pela Comissão Nacional de Região Metropolitana e Política Urbana, tem sido adotado por vários órgãos responsáveis pela Cartografia Regional e Urbana de seus estados. Seu desenvolvimento se dá a partir de uma folha na escala 1:25.000 até uma folha na escala 1:1.000.

Figura 2.15 - Nomenclatura das cartas do mapeamento sistemático

Além do índice de nomenclatura, dispomos também de um outro sistema de localização de folhas. Neste sistema numeramos as folhas de modo a referenciá-las através de um simples número, de acordo com as escalas. Assim:
- para as folhas de 1:1.000.000 usamos uma numeração de 1 a 46;
- para as folhas de 1:250.000 usamos uma numeração de 1 a 550;
- para as folhas de 1:100.000, temos 1 a 3036;
Estes números são conhecidos como "MI" que quer dizer número correspondente no MAPA-ÍNDICE.
O número MI substitui a conFigura ção do índice de nomenclatura para escalas de 1:100.000, por exemplo, à folha SD-23-Y-C-IV corresponderá o número MI 2215.
Para as folhas na escala 1:50.000, o número MI vem acompanhado do número (1,2,3 ou 4) conforme a situação da folha em relação a folha 1:100.000 que a contém. Por exemplo, à folha SD-23-Y-C-IV-3 corresponderá o número MI 2215-3.
Para as folhas de 1:25.000 acrescenta-se o indicador (NO,NE,SO e SE) conforme a situação da folha em relação a folha 1:50.000 que a contém, por exemplo, à folha SD-23-Y-C-IV-3-NO corresponderá o número MI 2215-3-NO.
A aparição do número MI no canto superior direito das folhas topográficas sistemáticas nas escalas 1:100.000, 1:50.000 e 1:25.000 é norma cartográfica hoje em vigor, conforme recomendam as folhas-modelo publicadas pela Diretoria de Serviço Geográfico do Exército, órgão responsável pelo estabelecimento de Normas Técnicas para as séries de cartas gerais, das escalas 1:250.000 e maiores.

Entende-se por Sensoriamento Remoto a utilização conjunta de modernos sensores, equipamentos para processamento e transmissão de dados, aeronaves, espaçonaves e etc., com o objetivo de estudar o ambiente terrestre através do registro e da análise das interações entre a radiação eletromagnética e as substâncias componentes do planeta Terra, em suas mais diversas manifestações.

1 - Fontes de energia eletromagnética:
Natural: O Sol é a principal fonte de energia eletromagnética. Toda matéria a uma temperatura absoluta acima de (0º K) emite energia, podendo ser considerada como uma fonte de radiação.

Artificial: Câmaras com flash, sensores microondas

2 - Energia eletromagnética:
A forma mais conhecida da energia eletromagnética é a luz visível, embora outras formas como raios X, ultravioleta, ondas de rádio e calor também sejam familiares.
Todas essas formas além de outras menos conhecidas são basicamente da mesma natureza e sua forma de propagação pode ser explicada através de duas teorias. Uma teoria é conhecida como "Modelo Corpuscular" e preconiza que a energia se propaga pela emissão de um fluxo de partículas (fótons). Outra, é conhecida como "Modelo Ondulatório" e postula que a propagação da energia se faz através de um movimento ondulatório. Esta teoria descreve a energia eletromagnética como uma feição sinuosa harmônica que se propaga no vácuo à velocidade da luz, ou seja, 3x10m/s.
Uma carga elétrica produz ao seu redor um campo elétrico (E). Quando essa carga entra em movimento desenvolve-se ao seu redor uma corrente eletromagnética. A aceleração de uma carga elétrica provoca perturbações nos campos elétrico e magnético, que se propagam repetitivamente no vácuo.
Uma onda eletromagnética pode então ser definida como a oscilação do campo elétrico (E) e magnético (M) segundo um padrão harmônico de ondas, ou seja, espaçadas repetitivamente no tempo.
Duas características importantes das ondas eletomagnéticas:

- Comprimento de onda: É a distância entre dois picos consecutivos de ondas eletromagnéticas. Por exemplo, os sensores da faixa do visível apresentam comprimento de onda que variam de 0,38 m m a 0,78 m m.

l ® m m onde, 1 m m = 1x10-6 m

- Frequência: Nº de picos que passa por um determinado ponto numa unidade de tempo.
A frequência é diretamente proporcional à velocidade de propagação da radiação, mas como essa velocidade é constante para um mesmo meio de propagação, para que haja alteração na frequência é necessário que haja alteração no comprimento de onda (l ).
V = l x f Þ l = V/f    onde,    V = veloc. da luz = 300.000 Km/s
                                           f = frequência, medida em Hertz (Hz)

3 - O espectro eletromagnético
Pode ser ordenado em função do seu comprimento de onda ou de sua frequência. O espectro eletromagnético se estende desde comprimentos de onda muito curtos associados a raios cósmicos até ondas de rádio de baixa frequência e grandes comprimentos de onda.
As características de cada elemento observado determinam a maneira particular segundo a qual emite ou reflete energia, ou seja, a sua "assinatura" espectral. Um grande nº de interações torna-se possível quando a energia eletromagnética entra em contato com a matéria. Essas interações produzem modificações na energia incidente, assim, ela pode ser:

- Transmitida: Propaga-se através da matéria

- Absorvida: Cede a sua energia, sobretudo no aquecimento da matéria

- Refletida: Retorna sem alterações da superfície da matéria à origem

- Dispersa: Deflectida em todas as direções e perdida por absorção e por novas deflexões

- Emitida: Geralmente reemitida pela matéria em função da temperatura e da estrutura molecular

Reflectância espectral: É a comparação entre a quantidade de energia refletida por um alvo e a incidente sobre ele.
Esse comportamento por qualquer matéria, é seletivo em relação ao comprimento de onda, e específico para cada tipo de matéria, dependendo basicamente de sua estrutura atômica e molecular. Assim, em princípio, torna-se possível a identificação de um objeto observado por um sensor, através da sua "assinatura espectral".
4 - Sistemas sensores
Um sistema sensor pode ser definido como qualquer equipamento capaz de transformar alguma forma de energia em um sinal passível de ser convertido em informação sobre o ambiente. No caso específico do Sensoriamento Remoto, a energia utilizada é a radiação eletromagnética.

4.1- Classificação dos Sensores Remotos

a) Quanto aos modelos operantes

- Ativos: Possuem sua própria fonte de radiação, a qual incide em um alvo, captando em seguida o seu reflexo. Ex.: Radar

- Passivos: Registra irradiações diretas ou refletidas de fontes naturais. Dependem de uma fonte de radiação externa para que possam operar. Ex.: Câmara fotográfica

b) Quanto ao tipo de transformação sofrida pela radiação detectada
- Não imageador: Não fornecem uma imagem da superfície sensoriada e sim registros na forma de dígitos ou gráficos.

- Imageador: Fornecem, mesmo por via indireta, uma imagem da superfície observada através do Sistema de quadros ou Sistema de Varredura.

Sistemas de quadro: Adquirem a imagem da cena em sua totalidade num mesmo instante.

Sistemas de Varredura: A imagem da cena é formada pela aquisição seqüencial de imagens elementares do terreno ou elementos de resolução, também chamado "pixels".

- Resolução: É a medida da habilidade que o sistema sensor possui em distinguir objetos que estão próximos espacialmente ou respostas que são semelhantes, espectralmente.

- Resolução espacial: Mede a menor separação angular ou linear entre dois objetos. Ex.: Um sistema de resolução de 30m (LANDSAT) significa que os objetos distanciados de 30m serão em geral distinguidos pelo sistema. Assim, quanto menor a resolução espacial, maior o poder resolutivo, ou seja, maior o seu poder de distinguir entre objetos muito próximos.

- Resolução espectral: É uma medida da largura das faixas espectrais e da sensibilidade do sensor em distinguir entre dois níveis de intensidade do sinal de retorno.

- Resolução temporal (Repetitividade): É o tempo entre as aquisições sucessivas de dados de uma mesma área.
5- Aquisição de dados em Sensoriamento Remoto
É o procedimento pelos quais os sinais são detectados, gravados e interpretados. A detecção da energia eletromagnética pode ser obtida de duas formas:
Fotograficamente: O processo utiliza reações químicas na superfície de um filme sensível à luz para detectar variações de imagem dentro de uma câmara e registrar os sinais detectados gerando uma imagem fotográfica.
Eletronicamente: O processo eletrônico gera sinais elétricos que correspondem às variações de energia provenientes da interação entre a energia eletromagnética e a superfície da terra. Esses sinais são transmitidos às estações de captação onde são registrados geralmente numa fita magnética, podendo depois serem convertidos em imagem.

6- Sensores Imageadores
Os sensores que produzem imagens podem ser classificados em função do processo de formação de imagem, em:

6.1- Sistemas Fotográficos: Foram os primeiros equipamentos a serem desenvolvidos, e possuem exelente resolução espacial. Compõem esse sistema, as câmaras fotográficas (objetiva, diafragma, obturador e o corpo), filtros e filmes.

6.2- Sistemas de imageamento eletro-óptico: Diferem do sistema fotográfico porque os dados são registrados em forma de sinal elétrico, possibilitando sua transmissão à distância. Os componentes básicos desses sensores são um sistema óptico e um detector. A função do sistema óptico é focalizar a energia proveniente da área observada sobre o detector. A energia detectada é transformada em sinal elétrico.

- Sistema de Imageamento Vidicon ( sistema de quadro): Tiveram origem a partir de sistema de televisão. Nesse sistema a cena é coletada de forma instantânea. Um exemplo de produto de Sensoriamento Remoto obtido por esse tipo de sensor são as imagens RBV coletadas pelas câmaras RBV à bordo dos satélites 1, 2 e 3 da série LANDSAT.

- Sistema de Varredura Eletrônica: Utiliza um sistema óptico através do qual a imagem da cena observada é formada por sucessivas linhas imageadas pelo arranjo linear de detetores na medida que a plataforma se locomove ao longo da linha de órbita. Esse sistema é utilizado em diversos programas espaciais, como por exemplo o SPOT (França).

- Sistema de Varredura Mecânica: Esse sistema, onde a cena é imageada linha por linha, vem sendo utilizado pelos sensores MSS e TM a bordo dos satélites da série LANDSAT. O espelho de varredura oscila perpendicularmente em direção ao deslocamento da plataforma, refletindo as radiâncias provenientes dos pixels no eixo de oscilação. Após uma varredura completa, os sinais dos pixels formam uma linha, e juntando os sinais linha a linha, forma-se a imagem da cena observada.

6.3- Sistemas de Microondas: O sistema de imageamento mais comum é o dos Radares de Visada Lateral, que por ser um sistema ativo não é afetado pelas variações diurnas na radiação refletida pela superfície do terreno, podendo ser usado inclusive à noite. Pode operar em condições de nebulosidade, uma vez que as nuvens são transparentes à radiação da faixa de microondas.

O termo "Radar" é derivado da expressão Inglesa "Radio Detecting and Ranging", que significa: detectar e medir distâncias através de ondas de rádio.
Inicialmente os radares destinavam-se a fins militares. No decorrer da Segunda Guerra Mundial a Inglaterra foi equipada com eficiente rede de Radar, mas só a partir da década de 60 os geocientistas procuraram aplicar os princípios de Radar para fins de levantamento de recursos naturais.
A grande vantagem do sensor Radar é que o mesmo atravessa a cobertura de nuvens. Pelo fato de ser um sensor ativo, não depende da luz solar e consequentemente pode ser usado à noite, o que diminui sobremaneira o período de tempo do aerolevantamento.
Um trabalho de relevância foi realizado na América do Sul, em especial na Região Amazônica pela Grumman Ecosystens. Esta realizou o levantamento de todo o território brasileiro, com a primeira fase em 1972 (Projeto RADAM) e posteriormente em 1976, na complementação do restante do Brasil (Projeto RADAM BRASIL).
Desde o final da década de 70 até o presente momento, uma série de Programas de Sistema Radar, foram executados ou estão em avançado estágio de desenvolvimento: SEAT; SIR-A; SIR-B; SIR-C (EUA); ERS-1 e ERS-2 (Europeu); JERS-1 e JERS-2 (Japão); ALMOZ (Rússia) e RADAR SAT(Canadá).

Banda

Comprimento de Onda (cm)

Freqüência
Q
0,75 - 1,18
40,0 - 26,5
K
1,18 - 2,40
26,5 - 12,5
X
2,40 - 3,75
12,5 - 8
C
3,75 - 7,50
8,0 - 4,0
S
7,50 - 15
4,0 - 2,0
L
15,00 - 30
2,0 - 1,0
UHF
30,00 - 100
1,0 - 0,3
P
77,00 - 136
0,2 - 0,4
O radar de visada lateral (RVL) situa-se na faixa de microondas do espectro eletromagnético, variando entre comprimentos de onda de 100 cm a 1mm, e freqüência de 0,3 a 50 GHZ.
Como imagem orbital, considera-se a aquisição de dados de sensoriamento remoto através de equipamentos sensores coletores à bordo de satélites artificiais.
Desde a década de 70, o IBGE vem utilizando imagens de satélite da série LANDSAT. Estas imagens, uma vez corrigidas geometricamente dos efeitos de rotação e esfericidade da Terra, variações de atitude, altitude e velocidade do satélite, constituem-se em valiosos instrumentos para a Cartografia, na representação das regiões onde a topografia é difícil e onde as condições de clima adversos não permitem fotografar por métodos convencionais.
No sistema de Sensoriamento Remoto do satélite LANDSAT, a produção de radiação que retorna ao sensor é direcionada para vários detectores, recebendo cada um deles, comprimento de ondas diferente, gerando 7 bandas distintas do espectro eletromagnético, sendo este sensor conhecido como multiespectral. O que na fotografia aérea (visível) e radar (microondas), possui uma pequena faixa espectral.
Para que o sistema de coleta de dados funcione é necessário que sejam preenchidas algumas condições:

a) Existência de fonte de radiação.
b) Propagação de radiação pela atmosfera.
c) Incidência de radiação sobre a superfície terrestre.
d) Ocorrência de interação entre a radiação e os objetos da superfície.
e) Produção de radiação que retorna ao sensor após propagar-se pela atmosfera.
O Sol é a principal fonte de energia eletromagnética disponível para o Sensoriamento Remoto da superfície terrestre. Quando observado como fonte de energia eletromagnética, o Sol pode ser considerado como uma esfera de gás aquecida pelas reações nucleares ocorridas no seu interior. A superfície aparente do Sol é conhecida por fotosfera e sua energia irradiada é a principal fonte de radiação eletromagnética no Sistema Solar. Esta energia radiante proveniente do Sol em direção à Terra, é chamada "Fluxo Radiante".
O Sistema LANDSAT, originalmente denominado ERTS (Earth Resources Technology Satellite) foi desenvolvido com o objetivo de se obter uma ferramenta prática no inventário e no manejo dos recursos naturais da Terra.
Planejou-se uma série de 6 satélites, tendo-se lançado o primeiro em julho de 1975.
SATÉLITE
DATA DE LANÇAMENTO
PROBLEMAS OPERACIONAIS
TÉRMINO DE OPERAÇÃO
Landsat 1
Jul´ 72
-
Jan´ 78
Landsat 2
Jan´ 75
Nov´79/Fev´82
Jul´ 83
Landsat 3
Mar´ 78
Dez´80/Mar´83
Set´ 83
Landsat 4
Jul´ 82
Fev´83(apenas TM)
-
Landsat 5
Mar´ 84
-
-
Figura 2.17 - Satélites da série LANDSAT
O quadro apresenta o período de vida útil possuido pelos satélites, que embora tenham sido concebidos para terem uma vida média útil de 2 anos, mantiveram-se em operação durante cerca de 5 anos.

Figura 2.18 - Configuração dos satélites da série LANDSAT

O Sistema LANDSAT, como qualquer outro sistema de Sensoriamento Remoto, compõe-se de duas partes principais:

- Subsistema satélite:Tem a função básica de adquirir os dados. Como componentes básicos, tem o satélite com o seu conjunto de sensores e sistemas de controle.

- Subsistema estação terrestre: Tem a função de processar os dados e torna-los utilizáveis pelos usuários. É composto por estações de recepção, processamento e distribuição dos dados.
As operações de uma estação de recepção de dados são:

- Verificar os equipamentos antes da entrada do satélite no campo de visualização da antena.
- Apontamento da antena na direção de conecção com o satélite.
- Rastreamento automático.
- Registro dos dados em fita de alta densidade (HDDT).
- Verificação da qualidade dos dados gravados.
- Retorno da antena à posição de descanso.
O laboratório de processamento de imagens tem a função de transformar os dados recebidos pelas estações de recepção. As atividades executadas neste processamento são: calibração radiométrica e correção geométrica baseada nos seguintes dados:

- Rotação e curvatura da Terra.
- Atitude do satélite
- Geometria dos instrumentos
- Projeção cartográfica utilizada, etc.
Através de arquivo de pontos de controle obtidos no terreno ou oriundos de cartas topográficas, pode-se melhorar a posição geométrica das imagens.
Os principais produtos resultantes do processamento de dados e disponibilizados para o usuário são fitas magnéticas ou imagens fotográficas e digitais.

A órbita do satélite LANDSAT é repetitiva, quase circular, sol-síncrona e quase polar. A altitude dos satélites da série 4 e 5 é inferior à dos primeiros, posicionado a 705 Km em relação a superfície terrestre.no Equador.
PARÂMETROS ORBITAIS
LANDSAT (MSS) 1, 2 e 3
LANDSAT (TM) 4 e 5
Resolução
80 m
30 m
Inclinação (graus)
99,114
98
Período (minuto)
103,267
98,20
Recobrimento da faixa
185 x 185 Km
185 x 185 Km
Hora da passagem pelo Equador
09:15
09:45
Ciclo de cobertura
18 dias
16 dias
Duração do ciclo
251 revoluções
233 revoluções
Distância entre passagens no Equador
2.760 Km
2.760 Km
Altitude (Km)
920
709
Figura 2.19 - Características da órbita do LANDSAT
Os satélites LANDSAT 1 e 2 carregavam a bordo 2 sistemas sensores com a mesma resolução espacial, mas com diferentes concepções de imageamento: o sistema RBV(Returm Beam Vidicon), com imageamento instantâneo de toda a cena e o sistema MSS, com imageamento do terreno por varredura de linhas.
Ambos os sistemas propunham-se a aquisição de dados multiespectrais, mas o desempenho do sistema MSS (Multi Spectral Scanner) fez com que o terceiro satélite da série tivesse seu sistema RBV modificado, passando a operar em uma faixa do espectro ao invés de três. Por outro lado, foi acrescentada uma faixa espectral ao sistema MSS, passando a operar na região do infravermelho termal.
A partir do LANDSAT 4, ao invés do sensor RBV, a carga útil do satélite passou a contar com o sensor TM (Thematic Mapper) operando em 7 faixas espectrais. Esse sensor conceitualmente é semelhante ao MSS pois é um sistema de varredura de linhas. Entretanto, incorpora uma série de aperfeiçoamentos, como resolução espacial mais fina, melhor discriminação espectral entre objetos da superfície terrestre, maior fidelidade geométrica e melhor precisão radiométrica.

Cada vez que o espelho imageador visa o terreno, a voltagem produzida por cada detector é amostrada a cada 9,95 microssegundos para um detector, aproximadamente 3.300 amostras são tomadas ao longo de uma linha de varredura com 185,2 Km.
As medidas individuais de radiação são arranjadas nas imagens, com dimensões de 30 x 30 metros. Esta área chama-se elemento de imagem ou pixel, que corresponde à menor unidade que forma uma imagem.
A detecção de objetos no terreno depende da relação entre o tamanho do objeto e o seu brilho (valor de brilho).
2_20.gif (8454 bytes)
Figura 2.20 Arranjo espacial de pixels e seus VB
Uma imagem LANDSAT original, é produzida na escala de 1:1.000.000. Esta imagem não se apresenta como um retângulo, pois durante o tempo em que os dados são tomados (25 segundos), a Terra gira um curto espaço devido ao movimento de rotação, e as linhas de latitude e longitude fazem um certo ângulo com o topo e a base da imagem, originando então uma imagem com a forma de um trapézio.
Figura 2.21 - Formato de uma imagem original
À medida que o satélite se desloca ao longo da órbita, o espelho de varredura oscila perpendicularmente à direção deste deslocamento, proporcionando o imageamento contínuo do terreno. Entretanto, o movimento de rotação provoca um pequeno deslocamento do ponto inicial da varredura para oeste, a cada oscilação do espelho.
Tais distorções geométricas são posteriormente corrigidas nas estações terrestres, como já visto, onde também são criadas as referências marginais das imagens e as informações de rodapé.

O sistema SPOT é um programa espacial francês semelhante ao programa LANDSAT. O primeiro satélite da série SPOT, lançado em fevereiro de 1986, levou a bordo 2 sensores de alta resolução HRV ( High Resolution Visible) com possibilidade de apontamento perpendicular ao deslocamento do satélite.
A altitude da órbita do SPOT é de 832 Km. É uma órbita polar, síncrona com o Sol, mantendo uma inclinação de 98º,7 em relação ao plano do equador. A velocidade orbital é sincronizada com o movimento de rotação da Terra, de forma que a mesma área possa ser imageada a intervalos de 26 dias.

Os sensores HRV foram planejados para operar em dois modos:

- O modo pancromático (preto e branco) que corresponde a observação da cena numa ampla faixa do espectro eletromagnético, permitindo uma resolução espacial de 10 x 10 metros (pixel).

- O modo multiespectral (colorido), corresponde a observação da cena em 3 faixas estritas do espectro, com resolução espacial de 20 x 20 metros (pixel).
Uma das características mais importantes apresentadas pelo satélite SPOT, é a utilização de sensores com ângulos de visada variável e programável através de comandos da estação terrestre, graças ao sistema de visada " off-nadir "
Através deste sistema, durante o período de 26 dias que separa 2 passagens sucessivas sobre uma mesma área, esta poderá ser observada de órbitas adjacentes em 7 diferentes passagens, se localizada no equador. Se a área de interesse estiver localizada nas latitudes médias (45º), a possibilidade de aquisição de dados será aumentada para 11 passagens.
Outra importante possibilidade através da visada " off- nadir " é a aquisição de pares estereoscópicos, proporcionada pelo imageamento de uma mesma área segundo ângulos de visada opostos, obtendo-se assim, uma visão tridimensional do terreno.

Figura 2.22 - Aquisição de dados proporcionado pela visada "off-nadir"

O sistema consiste em um satélite para observações da Terra, os instrumentos e a estação de rastreamento, recepção e processamento de dados.

Figura 2.23 - Componentes do Sistema SPOT

Como visto, o sensoriamento remoto propriamente dito seria o aproveitamento simultâneo das vantagens específicas de cada faixa de comprimento de ondas do espectro eletromagnético. Os sensores, geralmente, podem ser imageadores e não imageadores, sendo os primeiros os que vêm sendo mais estudados e aplicados no campo da Cartografia, especialmente a fotogrametria e a fotointerpretação.
Os estudos não se restringem apenas à porção visível do espectro, indo até as porções infravermelho e das microondas (radar), com diversas aplicações, principalmente na atualização cartográfica.
As imagens podem ser reproduzidas em papel, transparência (diapositivo), meio digital, etc., podendo ser em preto e branco, cores naturais, falsas cores e outras formas que permitem uma variação de estudos cartográficos, ou ainda poderão ser entregues sob a forma de fitas CCTS.
O produto mais usual são imagens obtidas a partir da visada vertical georreferenciadas para a projeção cartográfica desejada.
A utilização experimental de imagens LANDSAT-MSS no mapeamento planimétrico foi iniciada em convênio entre o INPE/DSG. Neste caso, a imagem na esc. 1:250.000 serve como fundo, sendo os temas lançados a seguir, manualmente.
Neste caso, os efeitos do relevo são levados em conta, por meio de um MNT (5) (Modelo Numérico de Terreno, é composto por uma grade regularmente espaçada com as cotas de cada ponto, seu uso permite a inclusão de altitude de cada ponto no modelo de correção) obtido por meio de formação de pares estereoscópicos de imagens.

A utilização de imagens orbitais no mapeamento temático apresenta um grande potencial. Neste caso, a imagem deve ser inicialmente corrigida para a projeção cartográfica desejada. A seguir, por meio de um sistema computacional para processamento de imagem, uma nova imagem é gerada. Esta nova imagem tanto pode ser uma imagem classificada (onde os diversos temas são separados), ou o resultado de algorítmo de combinações entre as diferentes bandas espectrais, por exemplo, as composições coloridas geradas a partir de imagem "razão entre bandas", muito úteis em mapeamento geológico. Finalmente, produz-se um documento cartográfico com a imagem resultante.
Vale ressaltar, para o fim temático, que as imagens LANDSAT-TM apresentam vantagens com relação ao produto SPOT, devido ao maior número de bandas espectrais e maior potencial temático.

As Cartas-imagens são imagens de satélite no formato de folhas de carta. Neste tipo de produto as cenas de satélites são ligadas digitalmente para cobrir a área requisitada, e subseccionadas em unidades de folhas de cartas.
As unidades de folhas de carta são suplementadas por anotações relativas às coordenadas e informações auxiliares que são extraídas de outros mapas ou cartas, para posteriormente serem reproduzidos numa escala média. As Cartas-imagem de satélite são derivadas de imagens dos satélites SPOT e LANDSAT corrigidas com alta precisão geométrica e radiométrica.
Na Carta-imagem de satélite a imagem é produzida em preto e branco a partir de única banda espectral ou a cores a partir da utilização de 3 bandas espectrais. A imagem é realçada por filtragens e métodos estatísticos.
A parte interna de uma carta-imagem de satélite normalmente não contém qualquer outro tipo de informação que não seja o próprio conteúdo da imagem.
O referido produto têm suas aplicações em diferentes áreas de empreendimentos como por exemplo aplicações florestais, Inventário de Recursos Naturais, Planejamento e Gerenciamento do uso da terra, etc.. As vantagens apresentadas por este tipo de produto para a atualização cartográfica são evidentes, especialmente em áreas onde as cartas tradicionais encontram-se desatualizadas ou inexistem.
Cabe aos clientes a especificação da projeção da carta e do elipsóide de referência a ser utilizado. Através de solicitação, poderão ainda ser realizados processamentos suplementares visando realçar as imagens, em benefício de trabalhos de interpretação especializada, como geológico ou de análise da vegetação, por exemplo.
As Cartas-imagens de satélite podem ser apresentadas em escalas padrão, de acordo com as delimitações da latitude/longitude ou X/Y.
(5) - MNT - Modelo Numérico de Terreno - Fleotiaux 1979 - Revista Brasileira de Cartografia - Janeiro/87 pag. 75

(5) - MNT - Modelo Numérico de Terreno - Fleotiaux 1979 - Revista Brasileira de Cartografia - Janeiro/87 pag. 75

Noções Básicas de Cartografia
III - ELEMENTOS DE REPRESENTAÇÃO
Sendo uma carta ou mapa a representação, numa simples folha de papel, da superfície terrestre, em dimensões reduzidas, é preciso associar os elementos representáveis à símbolos e convenções.
As convenções cartográficas abrangem símbolos que, atendendo às exigências da técnica, do desenho e da reprodução fotográfica, representam, de modo mais expressivo, os diversos acidentes do terreno e objetos topográficos em geral. Elas permitem ressaltar esses acidentes do terreno, de maneira proporcional à sua importância, principalmente sob o ponto de vista das aplicações da carta.
Outro aspecto importante é que, se o símbolo é indispensável é determinada em qualquer tipo de representação cartográfica, a sua variedade ou a sua quantidade acha-se, sempre, em função da escala do mapa.
É necessário observar, com o máximo rigor, as dimensões e a forma característica de cada símbolo, a fim de se manter, sobretudo, a homogeneidade que deve predominar em todos os trabalhos da mesma categoria.
Quando a escala da carta permitir, os acidentes topográficos são representados de acordo com a grandeza real e as particularidades de suas naturezas. O símbolo é, ordinariamente, a representação mínima desses acidentes.
A não ser o caso das plantas em escala muito grande, em que suas dimensões reais são reduzidas à escala (diminuindo e tornando mais simples a simbologia), à proporção que a escala diminui aumenta a quantidade de símbolos.
Então, se uma carta ou mapa é a representação dos aspectos naturais e artificiais da superfície da Terra, toda essa representação só pode ser convencional, isto é, através de pontos, círculos, traços, polígonos, cores, etc.
Deve-se considerar também um outro fator, de caráter associativo, ou seja, relacionar os elementos a símbolos que sugiram a aparência do assunto como este é visto pelo observador, no terreno.
A posição de uma legenda é escolhida de modo a não causar dúvidas quanto ao objeto a que se refere. Tratando-se de localidades, regiões, construções, obras públicas e objetos congêneres, bem como acidentes orográficos isolados, o nome deve ser lançado, sem cobrir outros detalhes importantes. As inscrições marginais são lançadas paralelamente à borda sul da moldura da folha, exceto as saídas de estradas laterais.
A carta ou mapa tem por objetivo a representação de duas dimensões, a primeira referente ao plano e a segunda à altitude. Desta forma, os símbolos e cores convencionais são de duas ordens: planimétricos e altimétricos.
A representação planimétrica pode ser dividida em duas partes, de acordo com os elementos que cobrem a superfície do solo, ou sejam, físicos ou naturais e culturais ou artificiais.
Os primeiros correpondem principalmente à hidrografia e vegetação, os segundos decorrem da ocupação humana, sistema viário, construções, limites político ou administrativos etc.
A representação dos elementos hidrográficos é feita, sempre que possível, associando-se esses elementos a símbolos que caracterizem a água, tendo sido o azul a cor escolhida para representar a hidrografia, alagados (mangue, brejo e área sujeita a inundação), etc.

Figura 3.1 - Elementos hidrográficos (Carta topográfica esc. 1:100.000)
Como não poderia deixar de ser, a cor verde é universalmente usada para representar a cobertura vegetal do solo. Na folha 1:50.000 por exemplo, as matas e florestas são representadas pelo verde claro. O cerrado e caatinga, o verde reticulado, e as culturas permanentes e temporárias, outro tipo de simbologia, com toque Figura tivo (Figura 3.2)

Figura 3.2 - Elementos de vegetação (Carta topográfica esc. 1:100.000)
O território brasileiro é subdividido em Unidades Político-Administrativas abrangendo os diversos níveis de administração: Federal, Estadual e Municipal. A esta divisão denomina-se Divisão Político- Administrativa - DPA.
Essas unidades são criadas através de legislação própria (lei federais, estaduais e municipais), na qual estão discriminadas sua denominação e informações que definem o perímetro da unidade.
A Divisão Política-Administrativa é representada nas cartas e mapas por meio de linhas convencionais (limites) correspondente a situação das Unidades da Federação e Municípios no ano da edição do documento cartográfico. Consta no rodapé das cartas topográficas a referida divisão, em representação esquemática.
Nas escalas pequenas, para a representação de áreas político-administrativas, ou áreas com limites físicos (bacias) e operacionais (setores censitários, bairros, etc.), a forma usada para realçar e diferenciar essas divisões é a impressão sob diversas cores.
Nos mapas estaduais, por exemplo, divididos em municípios, a utilização de cores auxilia a identificação, a forma e a extensão das áreas municipais. Pode-se utilizar também estreitas tarjas, igualmente em cores, a partir da linha limite de cada área, tornando mais leve a apresentação.
Grandes Regiões - Conjunto de Unidades da Federação com a finalidade básica de viabilizar a preparação e a divulgação de dados estatísticos. A última divisão regional, elaborada em 1970 e vigente até o momento atual, é constituída pelas regiões: Norte, Nordeste, Sudeste, Sul e Centro-Oeste
- Unidades da Federação: Estados, Territórios e Distrito Federal. São as Unidades de maior hierarquia dentro da organização político-administrativa no Brasil, criadas através de leis emanadas no Congresso Nacional e sancionadas pelo Presidente da República.
- Municípios: São as unidades de menor hierarquia dentro da organização político-administrativa do Brasil, criadas através de leis ordinárias das Assembléias Legislativas de cada Unidade da Federação e sancionadas pelo Governador. No caso dos territórios, a criação dos municípios se dá através de lei da Presidência da República.
- Distritos: São as unidades administrativas dos municípios. Têm sua criação norteadas pelas Leis Orgânicas dos Municípios.
- Regiões Administrativas; Subdistritos e Zonas: São unidades administrativas municipais, normalmente estabelecidas nas grandes cidades, citadas através de leis ordinárias das Câmaras Municipais e sancionadas pelo Prefeito.
- Área Urbana: Área interna ao perímetro urbano de uma cidade ou vila, definida por lei municipal.
- Área Rural: Área de um município externa ao perímetro urbano.
- Área Urbana Isolada: Área definida per lei municipal e separada da sede municipal ou distrital por área rural ou por um outro limite legal.
- Setor Censitário: É a unidade territorial de coleta, formada por área contínua, situada em um único Quadro Urbano ou Rural, com dimensões e número de domicílio ou de estabelecimentos que permitam o levantamento das informações por um único agente credenciado. Seus limites devem respeitar os limites territoriais legalmente definidos e os estabelecidos pelo IBGE para fins estatísticos.
A atividade de atualizar a DPA em vigor consiste em transcrevê-la para o mapeamento topográfico e censitário. Para documentar a DPA se constituiu o Arquivo Gráfico Municipal - AGM, que é composto pelas cartas, em escala topográfica, onde são lançados/representados os limites segundo as leis de criação ou de alteração das Unidades Político Administrativas.

Figura 3.3 - Grandes Regiões do Brasil

Figura 3.4 - Divisão Político-Administrativa
Localidade é conceituada como sendo todo lugar do território nacional onde exista um aglomerado permanente de habitantes.
Classificação e definição de tipos de Localidades:
1 - Capital Federal - Localidade onde se situa a sede do Governo Federal com os seus poderes executivo, legislativo e judiciário.
2 - Capital - Localidade onde se situa a sede do Governo de Unidade Política da Federação, excluído o Distrito Federal.
3 - Cidade - Localidade com o mesmo nome do Município a que pertence (sede municipal) e onde está sediada a respectiva prefeitura, excluídos os municípios das capitais.
4 - Vila - Localidade com o mesmo nome do Distrito a que pertence (sede distrital) e onde está sediada a autoridade distrital, excluídos os distritos das sedes municipais.
5 - Aglomerado Rural - Localidade situada em área não definida legalmente como urbana e caracterizada por um conjunto de edificações permanentes e adjacentes, formando área continuamente construída, com arruamentos reconhecíveis e dispostos ao longo de uma via de comunicação.
- Aglomerado Rural de extensão urbana - Localidade que tem as características definidoras de Aglomerado Rural e está localizada a menos de 1 Km de distância da área urbana de uma Cidade ou Vila. Constitui simples extensão da área urbana legalmente definida.
5.2 - Aglomerado Rural isolado - Localidade que tem as características definidoras de Aglomerado Rural e está localizada a uma distância igual ou superior a 1 Km da área urbana de uma Cidade, Vila ou de um Aglomerado Rural já definido como de extensão urbana.
5.2.1 - Povoado - Localidade que tem a característica definidora de Aglomerado Rural Isolado e possui pelo menos 1 (um) estabelecimento comercial de bens de consumo freqüente e 2 (dois) dos seguintes serviços ou equipamentos: 1 (um) estabelecimento de ensino de 1º grau em funcionamento regular, 1 (um) posto de saúde com atendimento regular e 1 (um) templo religioso de qualquer credo. Corresponde a um aglomerado sem caráter privado ou empresarial ou que não está vinculado a um único proprietário do solo, cujos moradores exercem atividades econômicas quer primárias, terciárias ou, mesmo secundárias, na própria localidade ou fora dela.
- Núcleo - Localidade que tem a característica definidora de Aglomerado Rural Isolado e possui caráter privado ou empresarial, estando vinculado a um único proprietário do solo (empresas agrícolas, indústrias, usinas, etc.).
5.2.3 - Lugarejo - Localidade sem caráter privado ou empresarial que possui característica definidora de Aglomerado Rural Isolado e não dispõe, no todo ou em parte, dos serviços ou equipamentos enunciados para povoado.
6 -Propriedade Rural - Todo lugar em que se encontre a sede de propriedade rural, excluídas as já classificadas como Núcleo.
7 - Local - Todo lugar que não se enquadre em nenhum dos tipos referidos anteriormente e que possua nome pelo qual seja conhecido.
8 - Aldeia - Localidade habitada por indígenas.
São representadas, conforme a quantidade de habitantes em nº absolutos pelo seguinte esquema:

Figura 3.5 - Localidades (Carta topográfica esc. 1:250.000)
Variando de acordo com a área, o centro urbano é representado pela forma generalizada dos quarteirões, que compõem a área urbanizada construída. A área edificada, que é representada na carta topográfica pela cor rosa, dá lugar, fora da área edificada, a pequenos símbolos quadrados em preto, representando o casario. Na realidade, um símbolo tanto pode representar uma casa como um grupo de casas, conforme a escala.
Na carta topográfica, dentro da área edificada, é representado todo edifício de notável significação local como prefeitura, escolas, igrejas, hospitais, etc., independentemente da escala.
Conforme a escala, representa-se a área edificada por simbologia correspondente.
Outras construções como barragem, ponte, aeroporto, farol, etc., têm símbolos especiais quase sempre associativo.

Figura 3.6 (a, b, c, d) - Uma mesma localidade representada em várias escalas
Área especial é a área legalmente definida subordinada a um órgão público ou privado, responsável pela sua manutenção, onde se objetiva a conservação ou preservação da fauna, flora ou de monumentos culturais, a preservação do meio ambiente e das comunidades indígenas. Principais tipos de Áreas Especiais:

- Parques Nacional, Estadual e Municipal
- Reservas Ecológicas e Biológicas
- Estações Ecológicas
- Reservas Florestais ou Reservas de Recursos
- Áreas de Relevante Interesse Ecológico
- Áreas de Proteção Ambiental
- Áreas de Preservação Permanente
- Monumentos Naturais e Culturais
- Áreas, Colônias, Reservas, Parques e Terras Indígenas
No caso particular das rodovias, sua representação em carta não traduz sua largura real uma vez que a mesma rodovia deverá ser representada em todas as cartas topográficas desde a escala 1:250.000 até 1:25.000 com a utilização de uma convenção. Assim sendo, a rodovia será representada por símbolos que traduzem o seu tipo, independente de sua largura física. As rodovias são representadas por traços e/ou cores e são classificadas de acordo com o tráfego e a pavimentação. Essa classificação é fornecida pelo DNER e DERs, seguindo o Plano Nacional de Viação (PNV).
Uma ferrovia é definida como sendo qualquer tipo de estrada permanente, provida de trilhos, destinada ao transporte de passageiros ou carga. Devem ser representadas tantas informações ferroviárias quanto o permita a escala do mapa, devendo ser classificadas todas as linhas férreas principais. São representadas na cor preta e a distinção entre elas é feita quanto à bitola. São representados ainda, os caminhos e trilhas.
As rodovias e ferrovias são classificadas da seguinte forma:

Figura 3.7 - Vias de Circulação (Carta topográfica esc. 1:100.000)
As linhas de comunicação resumem-se à linha telegráfica ou telefônica e às linhas de energia elétrica (de alta ou baixa tensão).
No rodapé das cartas topográficas constam ainda outros elementos:

Figura 3.8 - Linhas de comunicação e outros elementos planimétricos
(Carta topográfica esc. 1:100.000)
Em uma carta topográfica é de grande necessidade a representação das divisas interestaduais e intermunicipais, uma vez que são cartas de grande utilidade principalmente para uso rural. Na carta em 1:25.000 é possível a representação de divisas distritais, o que não acontece nas demais escalas topográficas.
Numa carta geográfica, a CIM, por exemplo, só há possibilidade do traçado dos limites internacionais e interestaduais.
Conforme as áreas, são representadas certas unidades de expressão administrativa, cultural, etc., como reservas indígenas, parque nacionais e outros.

Figura 3.9 - Linhas de Limites (Carta topográfica esc. 1:250.000)
A cor da representação da altimetria do terreno na carta é, em geral, o sépia. A própria simbologia que representa o modelado terrestre (as curvas de nível) é impressa nessa cor. Os areais representados por meio de um pontilhado irregular também é impresso, em geral, na cor sépia.
À medida que a escala diminui, acontece o mesmo com os detalhes, mas a correspondente simbologia tende a ser tornar mais complexa. Por exemplo, na Carta Internacional do Mundo ao Milionésimo (CIM), o relevo, além das curvas de nível, é representado por cores hipsométricas, as quais caracterizam as diversas faixas de altitudes.
Também os oceanos além das cotas e curvas batimétricas, têm a sua profundidade representada por faixas de cores batimétricas.

Figura 3.10 - Escala de cores Hipsométrica e Batimétrica (CIM)
A representação das montanhas sempre constituiu um sério problema cartográfico, ao contrário da relativa facilidade do delineamento dos detalhes horizontais do terreno.
O relevo de uma determinada área pode ser representado das seguintes maneiras: curvas de nível, perfis topográficos, relevo sombreado, cores hipsométricas, etc.
As cartas topográficas apresentam pontos de controle vertical e pontos de controle vertical e horizontal, cota comprovada e cota não comprovada, entre outros.

Figura 3.11 - Elementos altimétricos (Carta topográfica esc. 1:100.000)
Ponto Trigonométrico - Vértice de Figura cuja posição é determinada com o levantamento geodésico.
Referência de nível - Ponto de controle vertical, estabelecido num marco de caráter permanente, cuja altitude foi determinada em relação a um DATUM vertical . É em geral constituído com o nome, o nº da RN, a altitude e o nome do órgão responsável.
Ponto Astronômico - O que tem determinadas as latitudes, longitudes e o azimute de uma direção e que poderá ser de 1ª, 2ª ou 3ª ordens.
Ponto Barométrico - Tem a altitude determinada através do uso de altímetro.
Cota não Comprovada - Determinada por métodos de levantamento terrestre não comprovados. É igualmente uma altitude determinada por leitura fotogramétrica repetida.
Cota Comprovada - Altitude estabelecida no campo, através de nivelamento geométrico de precisão, ou qualquer método que assegure a precisão obtida.
O método, por excelência, para representar o relevo terrestre, é o das curvas de nível, permitindo ao usuário, ter um valor aproximado da altitude em qualquer parte da carta.
A curva de nível constitui uma linha imaginária do terreno, em que todos os pontos de referida linha têm a mesma altitude, acima ou abaixo de uma determinada superfície da referência, geralmente o nível médio do mar.
Com a finalidade de ter a leitura facilitada, adota-se o sistema de apresentar dentro de um mesmo intervalo altimétrico, determinadas curvas, mediante um traço mais grosso. Tais curvas são chamadas "mestras", assim como as outras, denominam-se "intermediárias". Existem ainda as curvas "auxiliares".

Figura 3.12 - Curvas de Nível
a) As curvas de nível tendem a ser quase que paralelas entre si.
b) Todos os pontos de uma curva de nível se encontram na mesma elevação.
c) Cada curva de nível fecha-se sempre sobre si mesma.
d) As curvas de nível nunca se cruzam, podendo se tocar em saltos d'água ou despenhadeiros.
e) Em regra geral, as curvas de nível cruzam os cursos d'água em forma de "V", com o vértice apontando para a nascente.
A natureza da topografia do terreno determina as formas das curvas de nível. Assim, estas devem expressar com toda fidelidade o tipo do terreno à ser representado.
As curvas de nível vão indicar se o terreno é plano, ondulado, montanhoso ou se o mesmo é liso, íngreme ou de declive suave.

Figura 3.13 - Formação escarpada e suave
2.2.3 - REDE DE DRENAGEM
A rede de drenagem controla a forma geral da topografia do terreno e serve de base para o traçado das curvas de nível. Desse modo, antes de se efetuar o traçado dessas curvas, deve-se desenhar todo o sistema de drenagem da região, para que possa representar as mesmas.
- Rio: Curso d’água natural que desagua em outro rio, lago ou mar. Os rios levam as águas superficiais, realizando uma função de drenagem, ou seja, escoamento das águas. Seus cursos estendem-se do ponto mais alto (nascente ou montante) até o ponto mais baixo (foz ou jusante), que pode corresponder ao nível do mar, de um lago ou de outro rio do qual é afluente.
De acordo com a hierarquia e o regionalismo, os cursos d’água recebem diferentes nomes genéricos: ribeirão, lajeado, córrego, sanga, arroio, igarapé, etc.
- Talvegue: Canal de maior profundidade ao longo de um curso d’água.
- Vale: Forma topográfica constituída e drenada por um curso d’água principal e suas vertentes.
- Bacia Hidrográfica: "Conjunto de terras drenadas por um rio principal e seus afluentes".
É resultante da reunião de dois ou mais vales, formando uma depressão no terreno, rodeada geralmente por elevações. Uma bacia se limita com outra pelo divisor de águas.
Cabe ressaltar que esses limites não são fixos, deslocando-se em conseqüência das mutações sofridas pelo relevo.
- Divisor de Águas: Materializa-se no terreno pela linha que passa pelos pontos mais elevados do terreno e ao longo do perfil mais alto entre eles, dividindo as águas de um e outro curso d’água. É definido pela linha de cumeeira que separa as bacias.
- Lago: Depressão do relevo coberta de água, geralmente alimentada por cursos d’água e mananciais que variam em número, extensão e profundidade.
- Morro: Elevação natural do terreno com altura de até 300 m aproximadamente.
- Montanha: Grande elevação natural do terreno, com altura superior a 300 m, constituída por uma ou mais elevações.
- Serra: Cadeia de montanhas. Muitas vezes possui um nome geral para todo o conjunto e nomes locais para alguns trechos.
- Encosta ou vertente: Declividade apresentada pelo morro, montanha ou serra.
- Pico: Ponto mais elevado de um morro, montanha ou serra.
Na representação cartográfica, sistematicamente, a eqüidistância entre uma determinada curva e outra tem que ser constante.
Eqüidistância é o espaçamento, ou seja, a distância vertical entre as curvas de nível. Essa eqüidistância varia de acordo com a escala da carta com o relevo e com a precisão do levantamento.
Só deve haver numa mesma escala, duas alterações quanto à eqüidistância. A primeira é quando, numa área predominantemente plana, por exemplo a Amazônia, precisa-se ressaltar pequenas altitudes, que ali são de grande importância. Estas são as curvas auxiliares. No segundo caso, quando o detalhe é muito escarpado, deixa-se de representar uma curva ou outra porque além de sobrecarregar a área dificulta a leitura.
Imprescindível na representação altimétrica em curvas de nível é a colocação dos valores quantitativos das curvas mestras.
ESCALA
EQÜIDISTÂNCIA
CURVAS MESTRAS
1: 25.000
10 m
50 m
1: 50.000
20 m
100 m
1: 100.000
50 m
250 m
1: 250.000
100 m
500 m
1: 1.000.000
100 m
500 m
OBS: 1) A curva mestra é a quinta (5ª) curva dentro da eqüidistância normal.
2) Eqüidistância não significa a distância de uma curva em relação à outra, e sim a altitude entre elas, ou seja, o desnível entre as curvas.

Figura 3.16 - Identificação das Curvas mestras
Nos mapas em escalas pequenas, além das curvas de nível, adotam-se para facilitar o conhecimento geral do relevo, faixas de determinadas altitudes em diferentes cores, como o verde, amarelo, laranja, sépia, rosa e branco.
Para as cores batimétricas usa-se o azul, cujas tonalidades crescem no sentido da profundidade (Figura 3.10).
O sombreado executado diretamente em função das curvas de nível é uma modalidade de representação do relevo.
É executada, geralmente, à pistola e nanquim e é constituida de sombras contínuas sobre certas vertentes dando a impressão de saliências iluminadas e reentrâncias não iluminadas.
Para executar-se o relevo sombreado, imagina-se uma fonte luminosa a noroeste, fazendo um ângulo de 45º com o plano da carta, de forma que as sombras sobre as vertentes fiquem voltadas para sudeste.

Figura 3.17 - Representação do Relevo Sombreado
Perfil é a representação cartográfica de uma seção vertical da superfície terrestre. Inicialmente precisa-se conhecer as altitudes de um determinado nº de pontos e a distância entre eles.
O primeiro passo, para o desenho de um perfil é traçar uma linha de corte, na direção onde se deseja representa-lo. Em seguida, marcam-se todas as interseções das curvas de nível com a linha básica, as cotas de altitude, os rios, picos e outros pontos definidos. (fig 3.18)
Tanto a escala horizontal como a vertical serão escolhidas em função do uso que se fará do perfil e da possibilidade de representa-lo (tamanho do papel disponível).
A escala vertical deverá ser muito maior que a horizontal, do contrário, as variações ao longo do perfil dificilmente serão perceptíveis, por outro lado, sendo a escala vertical muito grande o relevo ficaria demasiadamente exagerado, descaracterizando-o. A relação entre as escalas horizontal e vertical é conhecida como exagero vertical.
Para uma boa representação do perfil, pode-se adotar para a escala vertical um nº 5 a 10 vezes maior que a escala horizontal.
Assim, se H = 50.000 e V = 10.000, o exagero vertical será igual a 5.
Em um papel milimetrado traça-se uma linha básica e transfere-se com precisão os sinais para essa linha.
Levantam-se perpendiculares no princípio e no fim dessa linha e determina-se uma escala vertical.
Quer seguindo-se as linhas vertical do milimetrado quer, levantando-se perpendiculares dos sinais da linha-base, marca-se a posição de cada ponto correspondente na escala vertical. Em seguida, todos os pontos serão unidos com uma linha, evitando-se traços retos.
Alguns cuidados devem ser tomados na representação do perfil:
- Iniciar e terminar com altitude exata.
- Distinguir entre subida e descida quando existir duas curvas de igual valor.
- Desenhar cuidadosamente o contorno dos picos, se achatados ou pontiagudos.

Figura 3.18 - Perfil topográfico



Noções Básicas de Cartografia
IV - PROCESSO CARTOGRÁFICO
Mapeamento: Entende-se por mapeamento a aplicação do processo cartográfico sobre uma coleção de dados ou informações, com vistas à obtenção de uma representação gráfica da realidade perceptível, comunicada a partir da associação de símbolos e outros recursos gráficos que caracterizam a linguagem cartográfica.
O planejamento de qualquer atividade que de alguma forma se relaciona com o espaço físico que habitamos requer, inicialmente, o conhecimento deste espaço. Neste contexto, passa a ser necessária alguma forma de visualização da região da superfície física do planeta, onde desejamos desenvolver nossa atividade. Para alcançar este objetivo, lançamos mão do processo cartográfico.
Partindo-se do conceito estabelecido pela ACI (vide 1.1), pode-se distinguir, no processo cartográfico, três fases distintas: a concepção, a produção e a interpretação ou utilização. As três fases admitem uma só origem, os levantamentos dos dados necessários à descrição de uma realidade a ser comunicada através da representação cartográfica.
Quando se chega à decisão pela elaboração de um documento cartográfico, seja uma carta, um mapa ou um atlas, é porque a obra ainda não existe, ou existe e se encontra esgotada ou desatualizada.
Para se elaborar um documento dessa natureza, é imprescindível uma análise meticulosa de todas as características que definirão a materialização do projeto.
A identificação do tipo de usuário que irá utilizar um determinado documento cartográfico a ser elaborado, ou que tipo de documento deverá ser produzido para atender a determinado uso é que vai determinar se este será geral, especial ou temático, assim como a definição do sistema de projeção e da escala adequada.
É o conjunto de operações voltadas à definição de procedimentos, materiais e equipamentos, simbologia e cores a serem empregados na fase de elaboração, seja convencional ou digital, de cartas e mapas gerais, temáticos ou especiais.
O planejamento cartográfico pressupõe, além da definição dos procedimentos, materiais, equipamentos e convenções cartográficas, o inventário de documentos informativos e cartográficos que possam vir a facilitar a elaboração dos originais cartográficos definitivos.
Após a decisão da necessidade da elaboração de um mapa, deve-se inventariar a melhor documentação existente, sobre a área a ser cartografada.
No caso de carta básica, recorre-se à coleta de dados em campo (reambulação), principalmente para levantar a denominação (toponímia) dos acidentes visando a complementação dos trabalhos executados no campo.
No caso do mapa compilado a documentação coletada terá vital importância na atualização da base cartográfica compilada.
Aí estão incluídas todas as fases que compõem os diferentes métodos de produção. A elaboração da carta ou mapa planejado terá início com a execução das mesmas.
A fotogrametria é a ciência que permite executar medições precisas utilizando de fotografias métricas. Embora apresente uma série de aplicações nos mais diferentes campos e ramos da ciência, como na topografia, astronomia, medicina, meteorologia e tantos outros, tem sua maior aplicação no mapeamento topográfico.
Tem por finalidade determinar a forma, dimensões e posição dos objetos contidos numa fotografia, através de medidas efetuadas sobre a mesma.
Inicialmente a fotografia tinha a única finalidade de determinar a posição dos objetos, pelo método das interseções, sem observar ou medir o relevo, muito embora desde 1732 se conhecessem os princípios da estereoscopia; o emprego desta tornou possível apenas observar (sem medir), o relevo do solo contido nas fotografias analisadas estereoscopicamente.
Em 1901, o alemão Pulfrich, apoiando-se em princípios estabelecidos por Stolze, introduziu na Fotogrametria o chamado índice móvel ou marca estereoscópica. Então, não só foi possível observar o relevo, como medir as variações de nível do terreno.
Pulfrich construiu um primeiro aparelho que denominou "estereocomparador", e com ele iniciou os trabalhos dos primeiros levantamentos com base na observação estereoscópica de pares de fotografias utilizados em fotogrametria terrestre.
A partir de então uma série de outros aparelhos foram construídos e novos princípios foram estabelecidos, porém, para tomada de fotografias era necessário que os pontos de estação que referenciavam o terreno continuassem no solo, com todos os seus inconvenientes.
Ocorreu elevar ao máximo o ponto de estação, sendo utilizados balões, balões cativos e até "papagaios". Durante a guerra de 1914 - 1918 tornou-se imperioso um maior aproveitamento da fotogrametria, usando-se, para tomada de fotografias, pontos de estação sempre mais altos.
Com o advento da aviação desenvolveram-se câmaras especiais para a fotografia aérea, substituindo quase que inteiramente a fotogrametria terrestre, a qual ficou restrita apenas a algumas regiões. Quando são utilizadas fotografias aéreas, tem-se a aerofotogrametria.
Assim, aerofotogrametria é definida como a ciência da elaboração de cartas mediante fotografias aéreas tomadas com câmara aero-transportadas (eixo ótico posicionado na vertical), utilizando-se aparelhos e métodos estereoscópicos.
É realizado após um completo planejamento da operação, que é resultante de um estudo detalhado com todas as especificações sobre o tipo de cobertura a ser executado.
A tomada das fotografias aéreas obedece a um planejamento meticuloso e uma série de medidas são adotadas para que se possa realizar um vôo de boa qualidade. É necessário consultar o mapa climatológico para conhecimento do mês e dias favoráveis à realização do vôo fotogramétrico.
Um projeto de recobrimento é um estudo detalhado, com todas as especificações sobre o tipo de cobertura, por exemplo:
Condições naturais da região:

- Local a ser fotografado
- Área a fotografar
- Dimensões da área
- Relevo
- Regime de ventos
- Altitude média do terreno
- Variação de altura do terreno
- Mês para execução do vôo
- Nº de dias favoráveis ao vôo
Apoio logístico:

- Transporte
- Hospitais
- Alimentação
Condições técnicas (base e aeronave):

- Base de operação
- Alternativa de pouso
- Recursos na base
- Modelo da aeronave
- Autonomia
- Teto de serviço operacional
- Velocidade média de cruzeiro
- Tripulação
Condições técnicas (plano de vôo):

- Altura de vôo
- Altitude de vôo
- Escala das fotografias
- Superposição longitudinal
- Superposição lateral
- Câmara aérea
- Tipo e quantidade de filme empregado5
- Rumo das faixas
- Nº de faixas e nº de fotos
- Velocidade máxima (arrastamento)
- Tempo de exposição ideal
- Intervalo de exposição
- Distância entre faixas
- Base das fotos
OBS: As fotografias aéreas devem ser tomadas sempre com elevação do sol superior a 30º, em dias claros, nos quais as condições climáticas sejam tais que permitam fazer-se negativos fotográficos claros e bem definidos, isto é, bem contrastados.
É a fotografia obtida através de câmaras especiais, cujas características óticas e geométricas permitem a retratação acurada dos dados do terreno, de forma que os pormenores topográficos e planimétricos possam ser identificados e projetados na carta, bem como forneçam elementos para a medição das relações entre as imagens e suas posições reais, tais como existiam no momento da exposição. O termo é empregado genericamente, tanto para os negativos originais, como para as cópias e diapositivos. Por extensão pode também ser aplicado à tradução fotográfica dos dados obtidos por outros sensores remotos que não a câmara fotográfica. O formato mais usual é o de 23 x 23 cm.
Uma carta topográfica é um desenho do terreno, em que os acidentes e detalhes são representados por símbolos convencionais. Uma fotografia aérea é um retrato da superfície da terra, em que esses acidentes e detalhes aparecem como são vistos da aeronave. As duas maneiras, embora diferentes, representam a mesma coisa.
Classificação das imagens;
a) Quanto à estação de tomada das fotos
1 - Fotografias aéreas: São tomadas a partir de aeronaves
2 - Fotografias ou imagens orbitais: São tomadas em plataformas a nível orbital. Por exemplo, as obtidas pelo laboratório espacial SKYLAB, utilizadas para fotointerpretação e fins militares e satélites orbitais com uma grande variedade de sensores (faixa do visível, infravermelho, microondas, etc.).
3 - Fotografias terrestres: São tomadas a partir de estações sobre o solo. Utilizadas para recuperação de obras arquitetônicas e levantamento de feições particulares do terreno, como pedreiras, encostas, etc.
b) Quanto à orientação do eixo da câmara/sensor
1 - Fotografia aérea ou imagem vertical: São assim denominadas aquelas cujo eixo principal é perpendicular ao solo. Na prática tal condição não é rigorosamente atingida em conseqüência das inclinações da aeronave durante o vôo. Esta não deve exceder a 3%, limite geralmente aceito para classificar-se uma fotografia como vertical.
2 - Fotografia aérea ou imagem oblíqua: São tomadas com o eixo principal inclinado. Seu uso restringe-se mais a fotointerpretação e a estudos especiais em áreas urbanas. Subdividem-se em baixa oblíqua e alta oblíqua.
3 - Fotografia terrestre horizontal: É aquela cujo eixo principal é horizontal.
4 - Fotografia terrestre oblíqua: quando o eixo principal é inclinado.
c) Quanto à característica do filme/sensor
1 - Imagens pancromáticas: São as de uso mais difundido, prestando-se tanto para mapeamento quanto para fotointerpretação.
2 - Imagens infravermelhas: Indicadas para mapeamento em áreas cobertas por densa vegetação, ressaltando as águas e, devido a isso, diferenciando áreas secas e úmidas.
3 - Imagens coloridas ou multiespectrais: Além da cartografia se aplica a estudos de uso da terra, estudos sobre recursos naturais, meio ambiente, etc.
As fotografias aéreas têm como aplicação principal, em cartografia, o mapeamento através da restituição fotogramétrica, sendo utilizadas também em fotointerpretação.
Fotointerpretação: É a técnica de analisar imagens fotográficas com a finalidade de identificar e classificar os elementos naturais e artificiais e determinar o seu significado.
Existem diferentes tipos de imagem, sendo a fotografia aérea apenas um dos vários tipos resultantes do sensoriamento remoto, o qual inclui também imagem de radar (microondas) e imagens orbitais (pancromáticas, coloridas, termais e infravermelhas).
As câmaras aerofotogramétricas subvividem-se em dois grandes grupos, classificados quanto ao seu uso e objetivos, a saber:
a) Câmaras terrestres
b) Câmaras aéreas
Ambos os tipos executam a mesma função fundamentalmente; entretanto, possuem diferenças acentuadas, dentre as quais as mais importantes são:
1º) A câmara terrestre, permanecendo estacionária durante a exposição, não necessita de grande velocidade na tomada da fotografia, assim sendo, não precisa de um sistema obturador muito sofisticado.
2º) A câmara aérea, ao contrário, se desloca durante a exposição, necessitando de objetivas adequadas, obturadores de alta velocidade e filmes de emulsão ultra-rápida, reduzindo a um mínimo o tempo de exposição, sem prejudicar a qualidade da imagem.
Classifica-se ainda as câmaras aéreas de acordo com o ângulo que abrange a diagonal do formato, ângulo este que define a cobertura proporcionada pela câmara:
- Ângulo normal: até 75º - Para abranger uma área a uma determinada altura de vôo.
- Grande angular: de 75º até 100º - A altura de vôo será menor, com menor distância focal (f).
- Super grande angular: maior que 100º - A altura de vôo e a distância focal serão ainda menores.
Também são classificadas pela distância focal da objetiva:
- Curta: até 150 mm
- Normal: de 150 a 300 mm
- Longa: acima de 300 mm
A escala fotográfica é definida como sendo a relação entre um comprimento de uma linha na fotografia e a sua correspondente no terreno.

Figura 4.1. - Geometria básica de uma fotografia aérea
Considerando a Figura , nota-se que os raios de luz refletidos do terreno passam pelo eixo ótico da lente. O eixo ótico e o plano do negativo são perpendiculares, assim como o eixo ótico e o plano do terreno. Desta forma, o ponto principal da fotografia e o ponto Nadir representam o mesmo ponto.
Pode-se afirmar que os triângulos NOA e noa são semelhantes, assim, pode-se calcular a escala da fotografia usando essa semelhança de triângulos. Existem três elementos: a medida na foto, a medida no terreno e a escala conhecida ou a determinar.
A escala mantém a seguinte relação com os triângulos semelhantes:
      
E =   na =   oa      =  no 
        NA     OA        NO
Onde:
AN = distância real
an = distância na fotografia
NO = altura de vôo = H
no = distância focal = f
Assim, a escala da fotografia pode ser determinada conhecendo-se a distância focal e a altura de vôo.
E  =   no    =     f  
         NO         H
Ou ainda através de uma distância na fotografia entre dois pontos a e b quaisquer e a sua respectiva medida no terreno.
E   =   ab 
          AB
Exemplo: Em um recobrimento aéreo, a uma altura de vôo igual a 6.000 m, utilizando-se uma câmara com distância focal de 100 mm, a escala da fotografia será:
E  =  f     =        100 mm        =       1     
         H          6.000.000mm        60.000
É a representação do terreno através de fotografias aéreas, as quais são expostas sucessivamente, ao longo de uma direção de vôo. Essa sucessão é feita em intervalo de tempo tal que, entre duas fotografias haja uma superposição longitudinal de cerca de 60%, formando uma faixa. Nas faixas expostas, paralelamente, para compor a cobertura de uma área é mantida uma distância entre os eixos de vôo de forma que haja uma superposição lateral de 30% entre as faixas adjacentes. Alguns pontos do terreno, dentro da zona de recobrimento, são fotografados várias vezes em ambas as faixas.


Figura 4.2 - Vôo fotogramétrico

Figura 4.4 - Recobrimento lateral

Figura 4.5 - Perspectiva de 04 faixas de vôo
O recobrimento de 60% tem como objetivo evitar a ocorrência de "buracos" (área sem fotografar) na cobertura. Estes podem ocorrer principalmente devido às oscilações da altura de vôo e da ação do vento.

Figura 4.6 - Recobrimento com a ocorrência de deriva e desvio

Figura 4.7 - Efeitos da deriva e desvio
É o conjunto de operações cuja finalidade é coletar, avaliar, analisar e organizar toda a documentação existente para projetos de mapeamento topográfico, a partir de insumos aerofotogramétricos.
-Inicialmente faz-se o planejamento e organização do material fotogramétrico (vôo, fotoíndice, fotografias aéreas e diafilmes) da área a ser mapeada, separando-se três coleções de fotografias e uma de diafilmes, com a seguinte finalidade:
. Uma coleção de fotografias para o apoio de campo.
. Uma coleção de fotografias para a reambulação (levantamentos em campo da toponímia dos acidentes).
. Uma coleção de fotografias e diafilmes para o apoio fotogramétrico.
Através do fotoíndice visualiza-se a direção de vôo, identificando-se as fotos e procedendo-se a análise das superposicões longitudinal e lateral.
Coleta-se a documentação existente para o preparo da pasta de informações cartográficas (PIC), que conterá listagens de cidades e vilas, áreas especiais, minas, usinas, portos, faróis, aeródromos, mapas do sistema viário, mapas municipais, reservas, parques nacionais e outros.
Esquema de Apoio de Campo e Reambulação: Em uma base preestabelecida (normalmente em esc. 4 vezes menor que a escala da foto), é construido um esquema indicando a posição relativa das fotografias distribuindo-se as fotos ímpares de cada faixa e desenhando-se os principais acidentes, visando facilitar a orientação nos trabalhos de campo. Indica também a posição relativa dos pontos a serem determinados no campo.
- No preparo para reambulação, são delimitadas estereoscopicamente, nas fotografias, as áreas a serem reambuladas.
- O preparo para o apoio suplementar consiste em distribuir o apoio horizontal (H) e vertical (V). O horizontal é materializado nas fotos na periferia do bloco, buscando-se locais que permitam acesso para as medições de campo. O vertical, nas áreas de superposição lateral das faixas. Nas fotografias são definidas áreas dentro das quais será escolhido o ponto para o apoio de campo.
Esquema de Apoio Fotogramétrico: Servirá de orientação para as atividades de aerotriangulação. Esse esquema é feito tomando-se por base o apoio de campo. Não são representados os campos das fotos, limitando-se a apresentar o ponto central das mesmas e a linha de vôo de cada faixa.
- No preparo para o apoio fotogramétrico, é delimitada a área útil para escolha dos pontos de apoio: de apoio suplementar e perfuração dos pontos, nos diafilmes, visando auxiliar os trabalhos de aerotriangulação e restituição.
Concluidas estas operações, o material de apoio suplementar e reambulação é encaminhado para os trabalhos de campo. O material de apoio fotogramétrico (fotos e diafilmes) são enviados para a aerotriangulação.
É o conjunto de pontos a ser determinado no campo, definido por suas coordenadas planimétricas e altimétricas. Estes pontos, com a finalidade de fornecer subsídios aos trabalhos de aerotriangulação e restituição fotogramétrica, tem respectivas identificações nas fotos e são dimensionados previamente em gabinete através de fórmulas matemáticas, que estabelecem as distâncias dos pontos de apoio a serem determinados em campo.
É o trabalho realizado em campo, com base em fotografias aéreas, destinada à identificação, localização, denominação e esclarecimentos de acidentes geográficos naturais e artificiais existentes na área da fotografia, mesmo que nela, não apareçam por qualquer motivo (nuvens, sombra, vegetação, existência mais recente, etc.)
A reambulação é uma fase da elaboração cartográfica, na qual são levantados em campo as denominações dos acidentes naturais e artificiais que complementarão as cartas a serem impressas.
A quantidade de elementos a serem colhidos no campo, está relacionada diretamente com a escala e a finalidade da carta ou mapa. No entanto, em regiões com pouca densidade de elementos todos devem der reambulados, independentes da escala.
2.1.1.7 - AEROTRIANGULAÇÃO 

É o método fotogramétrico utilizado para determinação de pontos fotogramétricos, visando estabelecer controle horizontal e vertical através das relações geométricas entre fotografias adjacentes a partir de uma quantidade reduzida de pontos determinados pelo apoio suplementar, com a finalidade de densificar o apoio necessário aos trabalhos de restituição, após ajustamento.

Os pontos fotogramétricos foram planejados, perfurados, codificados mas não possuem coordenadas, e os pontos de apoio de campo foram planejados, codificados e medidos no campo, possuindo coordenadas referidas ao sistema terrestre. Na seqüência, todos os pontos de apoio fotogramétrico e de campo receberão coordenadas instrumentais (x, y, z), de forma que todo o conjunto esteja referido a um sistema instrumental.
Para gerar essas coordenadas são realizadas as orientações interior e exterior relativa.

Ajustamento: Utilizando-se um programa de cálculo e ajustamento que recebe como dados de entrada as coordenadas instrumentais, obtém-se as coordenadas ajustadas para todos os pontos do bloco, referidas ao sistema terrestre. O programa realiza uma transformação de sistemas de forma que os pontos de gabinete (apoio fotogramétrico) que possuiam somente coordenadas instrumentais passem a ter também coordenadas do sistema de projeção adotado para a carta UTM.

Plotagem: Com esse conjunto de coordenadas UTM procede-se então a plotagem de todos os pontos em material plástico estável, na escala desejada. Esse plástico conterá ainda "cruzetas" referenciais das coordenadas geográficas e das coordenadas UTM. O nome dado a esse plástico é estereominuta ou minuta de restituição .

2.1.1.8 - RESTITUIÇÃO 

É a elaboração de um novo mapa ou carta, ou parte dele, a partir de fotografias aéreas e levantamentos de controle, por meio de instrumentos denominados restituidores, ou seja, é a transferência dos elementos da imagem fotográfica para a minuta ou original de restituição, sob a forma de traços.

Através de um conjunto de operações denominado ORIENTAÇÃO, reconstitui-se, no aparelho restituidor, as condições geométricas do instante da tomada das fotografias aéreas, formando-se um modelo tridimensional do terreno, nivelado e em escala - modelo estéreoscópico.

- Orientação interior: É a reconstituição da posição da foto em relação ao feixe perspectivo (é a colocação do diafilme na posição correta, independente de coordenadas), a partir do conhecimento da distância focal ( f ) e das coordenadas do ponto principal.
- Orientação exterior: Depende do referencial externo e é realizada em duas etapas.

- Relativa: Orientação do feixe perspectivo em relação ao seu homólogo, através de cinco parâmetros de orientação.
K - ângulo em torno do eixo z (desvio da rota)
j - ângulo em torno do eixo y (inclinação do nariz)
w - ângulo em torno do eixo x (inclinação da asa)
Dz - diferença de altura de vôo
Dy - deslocamento lateral
Dx - não é calculado, é a distância entre as estações (bx)

- Absoluta: Consiste no posicionamento do conjunto de feixes perspectivos formados durante a orientação relativa, de maneira a estabelecer a posição correta do modelo em relação ao terreno, bem como no dimensionamento correto de sua escala.

- Colocar em escala: Através de pontos no terreno (2) com coordenadas plano altimétricas conhecidas e identificadas nas fotos.

- Nivelar: Através de 3 pontos nivelados, focados e em escala, todos os outros pontos também estarão. É recomendável, entretanto, utilizar-se 4 ou 5 pontos, por medida de segurança.

Após a orientação, verifica-se o resultado obtido, de acordo com tolerâncias estabelecidas e procede-se então a operação de restituição.

Fases da restituição (confecção da minuta):

                       Rios permanentes e intermitentes
a) Hidrografia   Massa d’ água (açudes, represas, lagos, lagoas, etc.

                    Sistema viário
                    Vias de transmissão e comunicação
b) Planimetria Edificações
                    Pontes, escolas, igrejas, cemitérios,etc.

                  Curvas de nível
c) Altimetria Cotas de altitude
                  Curvas batimétricas,etc.

Restituidor: É o nome dado tanto ao instrumento que se destina a realizar a restituição como ao seu operador.

Diapositivo / Diafilme: É a cópia em vidro ou filme transparente do fotograma, que se destina ao uso nas operações de restituição e aerotriangulação.

Estereoscopia: É a reprodução artificial da visão binocular natural. É a observação em 3ªdimensão de objetos fotografados em ângulos distintos (visto de centros perspectivos diferentes), por intermédio de instrumentos óticos dotados de lentes especiais como, por exemplo, o estereoscópio.

Estereoscópio: Instrumento ótico capaz de permitir artificialmente a observação em 3ª dimensão das imagens que diante das lentes parecem estar situadas no infinito.

Dessa forma, o observador recebe duas imagens homólogas de um mesmo objeto, um em cada olho, e o cérebro as funde em uma única imagem, estereoscopicamente.

Modelo estereoscópico: É o modelo tridimensional em escala. do terreno, obtido pela superposição ótica parcial de dois fotogramas tomados de dois centros perspectivos distintos, e uma vez restauradas as posições relativas de ambos quando das tomadas das fotografias.

Minuta ou estereominuta (original de restituição): Em fotogrametria, denomina-se minuta (ou estereo-minuta) o traçado, executado em instrumento fotogramétrico conhecido como restituidor, resultante das fotografias aéreas orientadas no instrumento, mediante os pontos nela marcados através da aerotriangulação. Esse traçado é executado sobre uma base estável.
São produzidas também outras folhas em material transparente que vão constar nomenclatura, vegetação e vias.

2.1.2 - COMPILAÇÃO 
É o processo de elaboração de um novo e atualizado original cartográfico, tendo por base a análise de documentação existente, e segundo a qual um ou vários mapas e cartas, fotografias aéreas, levantamentos, etc., são adaptados e compilados, em base com material estável, e para escala e projeção únicas.

2.1.2.1 - PLANEJAMENTO 
É a operação voltada ao inventário de documentação, planificação do preparo de base e elaboração da pasta de informacões cartográficas (PIC), formando um conjunto de documentos cartográficos, informações básicas e complementares, destinadas à confecção de cartas e mapas através da compilação.
2.1.2.1.1 - INVENTÁRIO DA DOCUMENTAÇÃO
Os dados cartográficos são analisados conforme as características das informações apresentadas.

a) Documentacão Básica - É utilizada diretamente na elaboração da base cartográfica:

- Cartas Topográficas
- Recobrimento Topográfico Local
- Recobrimento Aerofotogramétrico
- Cartas Náuticas e Aeronáuticas
- Arquivo Gráfico Municipal (AGM)
- Arquivo Gráfico de Áreas Especiais (AGAE)
- Cartas Planimétricas RADAMBRASIL
- Mapas Municipais
- Imagens Orbitais

b) Documentação Informativa - É utilizada com a finalidade de identificar, complementar e atualizar a documentação básica.

- Mapas Rodoviários (DNER/DER)
- Guias Rodoviários (Quatro Rodas)
- Guia de Ferrovias
- Atlas Físico
- Cadastro de Cidades e Vilas
- Cadastro de Faróis, Minas, Aeródromos e Portos

2.1.2.1.2 - PLANIFICAÇÃO DO PREPARO DE BASE
Após análise e seleção do conjunto de dados disponíveis, inicia-se uma seqüência de procedimentos na qual destacam-se as seguintes etapas:

a) Classificação da Documentação - É a análise de toda a documentação cartográfica encontrada, separando-se a básica da informativa.

b) Definição do Método de Compilação - Classificados os documentos cartográficos, define-se o método de compilação a ser utilizado na elaboração da base:

- Método de Compilação Direta
- Método de Compilação com Redução Fotográfica
2.1.2.1.3 - PASTA DE INFORMAÇÕES CARTOGRÁFICAS (PIC)
Reúne toda a documentação relativa ao planejamento e elaboração da carta ou mapa. São informações referentes às atividades e procedimentos adotados durante todas as fases do trabalho, tais como: relatórios, formulários, quadros demonstrativos, notas, etc.
2.1.2.2 - CRITÉRIOS PARA ELABORAÇÃO DA BASE CARTOGRÁFICA

2.1.2.2.1 - SELEÇÃO CARTOGRÁFICA

É a simplificação dos elementos topográficos extraídos da documentação básica visando a escala final do trabalho. A seleção deve ser equilibrada e a densidade dos elementos topográficos a serem representados devem refletir as características básicas da região, mantendo as feições do terreno. A representação deve incluir todos os elementos significativos para a escala final do trabalho, sem comprometer a legibilidade da carta.

a) Hidrografia - Inclui todos os detalhes naturais e/ou artificiais, tendo a água como principal componente.

b) Planimetria - A seleção dos elementos planimétricos deve ser criteriosa, considerando-se:

- Localidades: É obrigatória a representação de todas as cidades e vilas no campo da folha. Conforme a região geográfica, podem ser selecionados os povoados, lugarejos, núcleos e propriedades rurais.

- Sistema Viário: As rodovias e ferrovias são selecionadas considerando-se a interligação das localidades selecionadas

OBS: Nesta fase de seleção são incluídos os pontos cotados que serão selecionados, visando a representação da malha de pontos que representarão a variação de altitude.

c) Altimetria - Representa o relevo através de convenções cartográficas na forma de curvas de nível, escarpas, etc.

- Generalização: É a simplificação da forma geométrica dos acidentes, sem descaracterizá-los, possibilitando sua representação numa escala menor ao do documento origem.

- Interpolação: É a inserção de curvas de nível de cota definida e diferente da eqüidistância das curvas da documentação básica, visando a composição do modelado terrestre.

d) Vegetação - É feita separadamente a partir da documentação topográfica básica em base de poliéster, considerando-se como elementos de seleção as matas, florestas, reflorestamentos, culturas temporárias e permanentes, campos e mangues.
2.1.2.2.2 - PROCESSOS DE COMPILAÇÃO
a) Compilação Direta - Processo utilizado quando a documentação básica é composta de cartas cuja escala é a mesma da base final. Assim, a compilação é feita diretamente sobre as cartas, sem necessidade de seleção e redução.

b) Compilação com Redução Fotográfica - Este processo é utilizado quando a documentação básica é composta de cartas cuja escala é maior que a escala da base final.

- Com Redução Direta: A documentação básica é reduzida diretamente para a escala da base final do trabalho. As reduções são montadas no verso da plotagem da projeção e então, são selecionados os elementos topográficos. Neste processo o compilador executa simultaneamente a seleção e compilação

- Com Seleção: Os elementos são selecionados sobre uma base em poliéster e depois reduzidos fotograficamente para a escala final de trabalho. As reduções são fixadas no verso da plotagem da projeção e executa-se a compilação.

OBS: 1) Recomenda-se a utilização destes processos quando a região mapeada apresentar baixa densidade de detalhes.

2) Em caso de redução fotográfica, não deve ser ultrapassado o limite de cinco vezes.

- Ajuste Cartográfico: É necessário na elaboração de bases por compilação, em função das diferenças apresentadas pelas reduções dos originais cartográficos em relação à plotagem da projeção. Estas diferenças geralmente são resultantes do material usado para seleção (folhas impressas), das diversas projeções utilizadas e/ou meridianos centrais diferentes dos referenciados para cálculo das projeções. Nestes casos, a divergência apresentada deverá estar dentro do padrão de exatidão para a escala de trabalho. Atendendo a esta condição, a cada quadrícula ajusta-se a redução, de forma que a diferença seja distribuida dentro da mesma e, conseqüentemente, dentro de toda a folha.

- Atualização da base: Na fase de planejamento, devem ser coletados todos os documentos existentes na área a ser trabalhada, como imagens orbitais, cadastro de cidades e vilas,etc.. As imagens orbitais são importantes ferramentas para a atualização, em função da periodicidade da sua tomada.

2.1.2.3 - ATUALIZAÇÃO CARTOGRÁFICA

A carência de mapeamento no Brasil, principalmente em escalas grandes, é agravada pelo fato de grande parte encontrar-se desatualizado, fazendo com que a sua utilização não alcance os objetivos para os quais foram elaborados.

Os métodos para produção de mapas, assim como para atualização cartográfica evoluíram gradativamente com o advento de novos processos tecnológicos, principalmente na área da informática com o mapeamento digital, a utilização de Sistemas de Posicionamento Global (GPS), tratamento digital de imagens e Sistemas de Informação Geográfica (SIGs).

É indiscutível a importância do sensoriamento remoto para a cartografia. A agilidade e a redução de custos obtidos através da utilização de imagens orbitais para atualização cartográfica vem acompanhadas de uma qualidade cada vez maior no que diz respeito à resolução espacial e multiespectral de alta tecnologia, atendendo aos requisitos de precisão planimétricas exigidos para as escalas do mapeamento sistemático. Deve-se ressaltar o menor custo aquisição de imagens se comparado a realização de novo recobrimento aéreo.
2.1.2.3.1 - ALGUNS MÉTODOS PARA ATUALIZAÇÃO CARTOGRÁFICA
Os principais métodos de atualização de cartas utilizam documentação cartográfica existente como: fotografias aéreas e imagens orbitais, sendo que o trabalho de campo continua sendo necessário tanto para identificação de elementos nas áreas acrescidas (reambulação) como para solução de problemas de interpretação. Outro método é por meio de determinações GPS (utilizado pelo México na atualização da base territorial e agora pelo IBGE, no Censo 2000)
2.1.2.3.1.1 - ATRAVÉS DE FOTOGRAFIAS AÉREAS
a) Através de instrumentos como "aerosketchmaster" e interpretoscópio, por exemplo, pode-se atualizar pequenas áreas onde o volume de novos dados é pequeno em relação ao volume de informações contidas no mapa a ser atualizado.

O primeiro possibilita a transferência de detalhes da foto atual para o mapa. O segundo pode ser utilizado para o caso da foto atual estar em escala diferente da foto ou carta a atualizar.

b) Os restituidores são utilizados principalmente na atualização onde o fator precisão é requerido e onde grandes áreas são envolvidas.

c) Em função de seus recursos de ampliação e redução, a ortofoto é um meio utilizado na atualização planimétrica, pois podem ser produzidas na mesma escala do mapa a ser atualizado.

d) Os recursos da informática estão presentes atualmente em todas as etapas da cartografia. Na atualização digital, num dos procedimentos, a foto atual e o mapa a ser atualizado são transformados em arquivos digitais e superpondo-se as imagens, pode-se detectar as modificações ocorridas e efetuar-se as alterações.
2.1.2.3.1.2 - ATRAVÉS DE DOCUMENTAÇÃO CARTOGRÁFICA

O método utilizado para atualização a partir de documentação cartográfica existente e denominado compilação visa essencialmente analisar os documentos cartográficos já existentes em outros órgãos que trabalham na produção de cartas e mapas.

Os métodos que envolvem a atualização cartográfica através de documentação já existente, vão desde os chamados métodos convencionais até os modernos que se utilizam da cartografia digital.

- Cartas já existentes

a) Se a escala da carta se aproxima do produto final, basta selecionar os elementos cartográficos, reduzir e gerar uma folha original para orientar o preparo para impressão, o qual vai utilizar os fotoplásticos já existentes.

b) Se a escala for muito grande (semicadastro), deve ser levada primeiramente para uma escala intermediária.

Ex: Escala de 1:10.000 para 1:250.000, a escala intermediária será de 1:100.000.

2.1.2.3.1.3 - ATRAVÉS DE IMAGENS ORBITAIS E RADARMÉTRICAS
a) IMAGENS ANALÓGICAS

Pouco depois do lançamento do primeiro satélite LANDSAT já se buscava avaliar a possibilidade de atualização de cartas e mapas através de imagens pelo sensor MSS (pixel/resolução espacial de 80m). Estudos na década de 80, levaram a constatação da viabilidade do uso de Imagem MSS para mapeamento na escala 1:250.000.

Por ocasião do surgimento do sensor TM a bordo do satélite LANDSAT-5, com pixel/resolução espacial de 30m, realizaram-se diversas avaliações de suas imagens, mostrando que são viáveis para mapeamento nas escalas 1:100.000 ou menores.

b) IMAGEM DIGITAL

As metodologias para atualização cartográfica no formato digital encontram-se em constante desenvolvimento compreendendo as seguintes fases básicas:

- Correção geométrica e georreferenciamento.
- Ajuste de contraste das imagens que compõem uma carta e mosaicagem.
- Recorte segundo o contorno da carta.
- Atualização dos elementos cartográficos da carta digital com base na interpretação da imagem resultante da etapa anterior, através de superposição com a carta.
2.1.2.3.2 - COMPILAÇÃO DA BASE

A linha de obtenção de bases cartográficas por compilação é única, embora, em função da apresentacão final do trabalho, exista uma orientação diferenciada na sua elaboração.
Principais segmentos de representação de bases cartográficas:

a) Bases Para Impressão Off-set - São elaboradas considerando-se a separação dos elementos topográficos em suas cores características, representando-os conforme a impressão.
A compilação da base será executada sobre uma prancha plotada com a projeção UTM, em material estável, ajustando-se no verso as reduções ou elementos básicos na escala.

b) Bases para Conversão para Ambiente Digital (Digitalização Automatizada) - São obtidas pelos mesmos procedimentos necessários à elaboração de bases para impressão, ou seja, seleção e redução fotográfica das cartas topográficas em escala maior e compilação dos elementos topográficos. As bases são elaboradas em computador, a partir de mapas e cartas digitalizadas (mapas convertidos através de sistema CAD gerando arquivos magnéticos) e compilados utilizando-se aplicativos apoiados por computador. Os originais de compilação devem ser preparados separando-se os grupos de representação em categorias de informação, armazenadas por níveis, quando do processo de digitalização.

- Nível 1: hidrografia
- Nível 2: planimetria
- Nível 3: vias
- Nível 4: altimetria
- Nível 5: vegetação

c) Bases Para Desenho Final - São bases planimétricas compiladas em material estável utilizando-se somente a cor preta. Os procedimentos necessários à elaboração destas bases são os mesmos que para impressão, ou seja, seleção e redução fotogramétrica das cartas topográficas em escala maior.
2.1.2.4 - ORGANIZAÇÃO DA BASE E APRESENTAÇÃO FINAL
2.1.2.4.1 - ORGANIZAÇÃO DA BASE COMPILADA
Consiste do conjunto de folhas onde constarão as informações que serão utilizadas na fase de separação de cores e toponímia visando a impressão off-set.

- Folha de nomenclatura
- Folha de classificação de vias
- Folha de vegetação e massa d’água
- Lista de Nomenclatura

2.1.2.4.2 - DESENHO
Com a finalidade de atender a projetos especiais, onde são assentados temas específicos sobre as bases cartográficas elaboradas por processos de compilação, elabora-se o original de desenho dando um tratamento diferenciado, tanto pelo material utilizado (normógrafo, plástico UC4, tinta, etc.), como a forma de apresentação e identificação dos elementos.

Fases do desenho - Nesta fase, todo o trabalho já estará planejado, e definidos os critérios de seleção, compilação e a PIC, com a projeção cartográfica plotada. Nestas bases, não estarão representados os elementos altimétricos.

Representam-se:

- Hidrografia
- Planimetria:
. Localidades
. Sistema Viário
. Construções, Obras Públicas e Industriais
. Limites

2.2 - PREPARO PARA IMPRESSÃO 
É a etapa da produção cartográfica convencional onde os originais que reproduzem todos os elementos constantes nas fotografias aéreas (restituição) e oriundos de outros documentos cartográficos (compilação), são tratados e disponibilizados para a impressão.
2.2.1 - LABORATÓRIO FOTOCARTOGRÁFICO 
Um órgão cartográfico que precise dispor de uma estrutura independente para a produção dos seus originais, necessita de um laboratório fotocartográfico.

No laboratório fotografa-se o original cartográfico (original de restituição ou compilação) nas suas exatas dimensões para a obtenção inicial de um negativo.

Através do negativo, transporta-se por meio fotoquímico as imagens do original cartográfico para o fotoplástico (plástico estável que possui uma face brilhante e a outra recoberta com uma fina e uniforme camada de tinta fosca).
2.2.2 - GRAVAÇÃO /SEPARAÇÃO DE CORES DOS ELEMENTOS 
Na face fosca do fotoplástico, isto é, a que recebeu uma camada apropriada, os elementos do original cartográfico transportados são abertos ou gravados através dos carrinhos de gravação. Retirada essa camada, os elementos gravados permitirão a passagem de luz, funcionando como um negativo.

Para as folhas topográficas são produzidos três fotoplásticos, um para cada tipo de representação correspondentes às cores:

a) Azul - elementos hidrográficos

b) Preto - moldura, quadriculados, sistemas viário, limites, etc.

c) Sépia - curvas de nível

No fotoplástico (scribe-coat) são executadas as representações com traço, isto é, somente linhas são gravadas. Para representação de áreas é usado um outro tipo de plástico estável no qual se acha aderida uma leve película opaca, facilmente removível, conhecido como peel-coat.
A película, ao redor dos elementos, é cortada e levantada, ficando transparente.

a) Azul - para representar as massas d'água

b) Vermelho - para representar estradas e áreas edificadas

c) Verde - Para representar a vegetação

Com os fotoplásticos (scribe-coats) e peel-coats é gerada em laboratório, a chamada primeira prova química, que reproduz todos os elementos já em sua cor definitiva.
2.2.3 - COLAGEM (Fixação de Topônimos)
É a aplicação de todos os nomes que vão constar na carta ou mapa e parte da simbologia e convenções, tendo como base o original cartográfico e as demais folhas (nomenclatura, vegetação e sistema viário).

Os nomes são confeccionados com tipos e corpos apropriados que variam de acordo com a escala, em um finíssimo plástico transparente recebendo no verso, uma camada de adesivo. Esses nomes são retirados e "colados" em uma folha estável, de maneira a identificar/denominar todos os elementos naturais e artificiais.

Após a colagem são produzidos em laboratório, três negativos, para os nomes que sairão nas cores azul, preto e sépia, para o caso das folhas topográficas.
No geral, produz-se tantos negativos quantas forem as cores utilizadas.
Para algumas escalas é produzida também uma folha de colagem para o verso da carta e conseqüentemente, mais um negativo.

2.2.4 - SELEÇÃO DE CORES DA TOPONÍMIA E GERAÇÃO DE POSITIVOS PARA IMPRESSÃO OFF-SET

Nos negativos constarão todos os nomes que foram colados, sendo necessário selecionar-se, com tinta apropriada, os nomes referentes a cada cor.

A seguir produz-se uma 2ª prova química, que consiste em todos os elementos constantes na 1ª só que com o acréscimo de toda a nomenclatura.

Após uma revisão e correção são gerados então, através dos fotoplásticos, peel-coats e negativos, os positivos litho, chamados de fotolitos.

É produzido um positivo para cada cor, que depois de submetidos à um controle de qualidade são finalmente liberados para a impressão gráfica obtendo-se assim o produto final cartográfico, ou seja, as cartas ou mapas.
2.3 - CARTOGRAFIA TEMÁTICA
Os produtos da cartografia temática são as cartas, mapas ou plantas em qualquer escala, destinadas a um tema específico. A representação temática, distintamente da geral, exprime conhecimentos particulares específicos de um tema (geologia, solos, vegetação, etc.) para uso geral.

A cartografia temática ilustra o fato de que não se pode expressar todos os fenômenos num mesmo mapa e que a solução é, portanto, multiplicá-los, diversificando-os. O objetivo dos mapas temáticos é o de fornecer, com o auxílio de símbolos qualitativos e/ou quantitativos dispostos sobre uma base de referência, geralmente extraída dos mapas e cartas topográficas, as informações referentes a um determinado tema ou fenômeno que está presente ou age no território mapeado.

Os mapas e cartas geológicas, geomorfológicas, de uso da terra e outras, constituem exemplos de representação temática em que a linguagem cartográfica privilegia a forma e a cor dos símbolos como expressão qualitativa.

A descrição qualitativa é aquela que denota qualidade, ou seja, cada uma das circunstâncias ou características dos fenômenos (aspectos nominais do fenômeno) são classificadas segundo um determinado padrão. (Figura 4.8).

Os mapas de densidade da população, de precipitação pluviométrica, de produção agrícola, de fluxos de mercadorias, constituem exemplos em que pontos, dimensões dos símbolos, isarítmas, corópletas, diagramas e outros recursos gráficos são utilizados para representar as formas de expressão quantitativa.

A descrição quantitativa, mensura o fenômeno através de uma unidade de medida ou através de um percentual. (aspecto ordinal do fenômeno) (Figura 4.9).
2.3.1 - CARACTERÍSTICAS TEMÁTICAS
Na elaboração de um mapa temático são estabelecidos limites a partir dos dados que lhe são pertinentes, não importando a forma pelas quais foram obtidos, nem como foram consagrados os elementos que são concernentes à ciência ou técnica específica do tema em estudo. É pertinente à Cartografia Temática, quais as características dos dados a serem representados, se são físicos e/ou estatísticos e a forma como estes devem ser graficamente representados e relacionados com a superfície da Terra.

Como exemplos podemos citar não ser uma preocupação da Cartografia Temática, como a geologia estabelece a datação das rochas, a existência de falhas e desdobramentos, ou como a demografia estabelece suas variáveis quanto as aglomerações urbanas.

O objetivo da Cartografia Temática é como melhor proceder para que o mapa expresse os fatos e fenômenos, objeto do estudo relacionado ao tema. A ciência pertinente a um determinado tema visa o conhecimento da verdade desses fatos e fenômenos e à Cartografia Temática cabe demonstrá-lo graficamente, sendo portanto um meio auxiliar dessa ciência ,tais como: geologia, geomorfologia, metereologia, geografia, demografia entre tantas outras
2.3.2 - CLASSIFICAÇÃO
Classificar o ramo da Cartografia quanto ao seu produto final, não tem sido matéria de conclusão unânime. Esta classificação está mais ligada ao desenvolvimento da Cartografia em determinados países do que a um conceito universalmente aceito. De um modo geral não são classificados quanto à escala, formato ou representação cartográfica, mas sim ao conteúdo temático.

Neste mister a cartografia deixa de restringir-se a representação geral dos aspectos topográficos da superfície da terra, seja na parte exclusivamente planimétrica ou na plano-altimétrica, e presta sua contribuição ao processo criativo da sociedade e ao próprio amadurecimento de suas técnicas e métodos científicos, como ferramenta auxiliar de outras ciências.

O uso de mapas para conhecimentos específicos, como a navegação aérea e marítima, a meteorologia e o turismo, por exemplo, determinou o aparecimento dos mapas e cartas especiais.

Já no final do século passado, a cartografia geológica constituía-se em uma particularidade, impulsionando mesmo a cartografia topográfica. Hoje, a diversidade de tipos de mapas vem pressionando a Cartografia a não poder mais ser estudada sem uma sistematização em suas formas de representação.

Com a expansão dos mais variados temas ocorre uma superposição de termos. Assim, usa-se para as cartas aeronaúticas, mapas do tempo, de clima, cartas naúticas e oceonográficas, mapas turísticos e de comunicação, bem como os geológicos, cobertura vegetal, morfológicos, econômicos, etc., a denominação, indistintamente de " Especiais" e "Temáticos". Portanto não há somente uma sobreposição das duas expressões mas também uma tendência de distinguí-las para conter tipos de mapas que compõem a Cartografia Especial de outros que pertencem a Cartografia Temática.

Classificação da Cartografia:
DIVISÃOSUBDIVISÃOOBJETIVO BÁSICOEXEMPLOS
Geral- Cadastral
- Topográfica
- Geográfica
Conhecimento da superfície topográfica, nos seus fatos concretos, os acidentes geográficos naturais e as obras do homem.Plantas de cidades; Cartas de mapeamento sistemático; Mapas de países; continentes; Mapas-múndi.
Especial- Aeronáutica
- Náutica
- Metereológica
- Turística
- Geotérmica
- Astronômica
etc...
Servir exclusivamente a um determinado fim; a uma técnica ou ciênciaCartas aeronáuticas de vôo, de aproximação de aeroportos; Navegação marítima; Mapas do tempo, previsão; Mapa da qualidade do subsolo para construção, proteção de encostas.
Temática- de Notação
- Estatística
- de Síntese
Expressar determinados conhecimentos particulares para uso geralMapa geológico, pedológico; Mapas da distribuição de chuvas, populações; Mapas econômico zonas polarizadas.
A Cartografia Temática sobre a visão conceitual do cartógrafo Rodolfo Barbosa (3), classifica os Mapas Temáticos em três tipos;

- De notação.

Este primeiro grupo registra os fenômenos na sua distribuição espacial, sob a forma de cores ou de tonalidades muito variadas, complementadas muitas vezes por sinais gráficos característicos.

A ênfase da variação aparece invariavelmente no destaque das diferenças qualitativas de um fenômeno ocorrido numa área, para o fenômeno que varia em outra área, e assim por diante. Como exemplos de mapas temáticos de notação podemos citar: geológico, pedológico, uso da terra, etnográfico, oceanográfico, etc..

- Estatística.
Os elementos primários do tema que serão elaborados cartograficamente, são originários da técnica estatística, tanto no que se refere aos elementos físicos, quanto aos elementos humanos.

Assim, se caracterizam nesta área, os mapas de densidade, os de distribuição por pontos, os de fluxo, os pluviométricos e mapas de isolinhas.

- Síntese.
Tem a finalidade explicativa, em que a representação de um fenômeno, em conjunto, é realizada mediante as suas relações externas.

Os mapas de síntese expressam "o conjunto dos elementos de diferentes fatos ou fenômenos", formam uma abstração intelectual, apresentando-se de forma global.

Podem ser considerados de síntese os mapas econômicos complexos, os de áreas homogêneas, os morfo estruturais, os geomorfológicos, os históricos etc..

(3) - Barbosa, Rodolfo Pinto - Revista Brasileira de Geografia, v. 29, nº 4 , out./dez.1967.


Figura 4.8 - Potencialidade agrícola dos solos


Figura 4.9 - Densidade da população
3 - INTERPRETAÇÃO E UTILIZAÇÃO 

A existência dos mais diversos tipos de cartas e mapas permite aos usuários das mais variadas formações profissionais, através da utilização desses documentos cartográficos, desenvolver estudos, análises e pesquisas relativos à sua área de atuação. São também fundamentais como instrumento de auxílio ao planejamento, organização e administração dos governos.

Aplicabilidade de alguns dos principais produtos cartográficos elaborados na Diretoria de Geociências do IBGE.

1) Mapeamento Topográfico Sistemático: Congrega o conjunto de procedimentos que têm por finalidade a representação do espaço territorial brasileiro, de forma sistemática, por meio de séries de cartas gerais, contínuas, homogêneas e articuladas.

São folhas das cartas topográficas nas escalas 1:25.000, 1:50.000, 1:100.000, e 1:250.000, e geográfica na escala 1:1.000.000. Compõem a Mapoteca Topográfica Digital - MTD (Base de dados cartográficos em meio digital).

Aplicabilidade:

- Suporte ao mapeamento temático e especial.
- Suporte ao mapeamento náutico, aeronáutico, rodoviário e ferroviário.
- Suporte ao planejamento em diversos níveis.
- Suporte ao mapeamento de unidades territotiais (Estado, Municípios e outros).
- Legislação de estruturas territoriais, regional e setoriais.
- Base para ante-projetos de engenharia e ambientais.
- Subsídios para identificação das divisas internacionais
- Monitoramento ambiental.
- Estudos e projetos governamentais
- Cadastros e ante-projetos de linhas de transmissão.
- Posicionamento e orientação geográfica.
- Identificação e classificação dos estados, territórios e municípios beneficiados com "royalties" de petróleo, na faixa de fronteira situados na Zona Costeira.
- Previsão de safras agrícolas.
- Outros.

2) Mapeamento Temático: Objetiva produzir documentos cartográficos, em escalas compatíveis com os levantamentos dos aspectos físicos e culturais, quanto à ocorrência e distribuição espacial.

São bases cartográficas em diversas escalas para subsidiar várias atividades de projetos, tais como: mapa índice, planejamento cartográfico e preparo para impressão, visando os seguintes produtos: Mapas temáticos, Mapas Murais, Atlas e Cartas especiais.
Aplicabilidade:

- Subsidiar estudos e projetos em áreas específicas como:
- Recursos naturais e meio ambiente
- População
- Comércio e serviços
- Outros
- Suporte didático-pedagógico.

3) Mapeamento das Unidades Territoriais: Objetiva a representação cartográfica do Território Nacional, enfatizando a divisão político-administrativa.

São mapas e cartogramas políticos Nacional, Regionais, Estaduais e Municipais. Mapas municipais, mapas para fins estatísticos e bases cartográficas em diversas escalas.

Aplicabilidade:

- Estudos e Projetos Governamentais
- Referenciamento e dimensionamento de obras públicas e privadas
- Estudos de evolução de surtos e endemias
- Comunicações hidro-rodo ferroviárias
- Defesa Civil
- Finalidades científicas e didáticas
- Pesquisas de opinião e de mercado
- Mapeamento Temático.

4) Atlas: Apresentam, através de sínteses temáticas, uma visão geográfica do território, nos seus aspectos físicos, políticos, sociais e econômicos.

Produtos: Atlas Nacional, Atlas Regional e Estadual, Atlas Geográfico Escolar.

Aplicabilidade:

- Conhecimento da realidade, tendências e transformações do espaço brasileiro
- Instrumentalizar o sistema de planejamento na gestão territorial;
- Material didático;
- Intercâmbio internacional;
- Fonte de referência para estudos e pesquisas.
Noções Básicas de Cartografia
V - APLICAÇÕES E USO
1 - LEITURA DE COORDENADAS 
Na leitura de coordenadas geográficas ou planimétricas de um ponto, em uma carta ou mapa, empregamos conhecimentos matemáticos elementares tais como conceito de segmentos proporcionais e regra de três simples.

A leitura de coordenadas é uma tarefa que deve ser executada com cuidado e atenção.

A determinação de um ponto na carta, mediante as suas coordenadas planas E e N ou a sua latitude e longitude é um processo usado no sentido de situar um detalhe cartográfico, como o cruzamento de estradas, a foz de um rio, a torre de uma igreja, etc.

No caso de se ter os valores das coordenadas e quando se precisa marcá-lo na carta, é necessário em primeiro lugar, verificar, de acordo com os valores das coordenadas em questão quais os dois pares do grid (UTM) ou paralelos e meridianos (geográficas) que abrangem o ponto a ser determinado.

Para fazermos as medições, escolhemos preferencialmente uma extensão em centímetros (ou milímetros) que corresponda a um múltiplo do valor encontrado no intervalo entre os pares do grid (metros) ou paralelos e meridianos (graus, minutos, segundos) e que exceda a medida entre eles.

1.1 - COORDENADAS GEOGRÁFICAS 
Locar na escala 1:1.250.000 o ponto correspondente à Faz. Água da Prata, cujas coordenadas são:

         j = 22º 50' 42" S
Faz.
         l = 53º 47' 34" W.Gr.

Os pares de paralelos em questão são os de 22º 45’ e 23º 00’ e os pares de meridianos, 53º 45’ e 54º 00’.

Usamos uma régua graduada com extensão de 15 cm (150 mm) e medimos o intervalo entre os paralelos e meridianos, com a finalidade de estabelecermos uma relação entre este intervalo, em graus, minutos e segundos e a distância gráfica entre eles, em milímetros.

A medição deve ser feita fazendo coincidir o início da graduação da régua (zero) com o paralelo ou meridiano de menor valor e a maior graduação escolhida (quinze), com o de maior valor.
1º) Marcação de latitude:

Verificar: - Intervalo entre os paralelos: 15’ = 900"                       150 mm --------- 900"
Þ
              - Distância gráfica entre eles:                                      150 mm ---------1 mm x

                                                                                                           x = 6"
Ou seja, a cada 1 mm correspondem 6"

- Latitude indicada na carta: 22º 45’

- Latitude da Faz.: 22º 50’ 42"

                                                                                              1 mm ---------- 6"
Para a latitude desejada faltam: 5’ 42" = 342"               Þ
                                                                                                  x   --------- 342"

Logo, x = 42,222 mm = 57 mm

Posicionamos a régua e marcamos dois pontos afastados um do outro, com o valor encontrado (57 mm), ligando-os a seguir e traçando uma reta horizontal, ou marcamos um único ponto e, com um esquadro, traçamos uma reta horizontal paralela ao paralelo.

2º) Marcação da longitude:

Verificar: - Intervalo entre os meridianos: 15’ = 900"                      150 mm --------- 900"
Þ
    - Distância gráfica entre eles: 150 mm                               1 mm --------- x

                                                                                                  x = 6"

Ou seja, a cada 1 mm correspondem 6"

- Longitude indicada na carta: 53º 45’

- Longitude da Faz.: 53º 47’ 34"

                                                                                             1 mm ------------ 6"
Para a longitude desejada faltam: 2’ 34" = 154"                 Þ
                                                                                                  x ------------ 154"

Logo, x = 25,6 mm
O procedimento é o mesmo que o adotado para a latitude, ou seja, posicionamos a régua e marcamos o valor de 25,6mm em dois pontos diferentes, ligando-os e traçando assim, uma reta vertical, ou marcamos um único ponto e, com um esquadro, traçamos uma reta vertical paralela ao meridiano.

No cruzamento entre as duas retas traçadas estará o ponto desejado, determinado pelas coordenadas dadas, ou seja, a Faz. Água da Prata. (Figura 5.1)


5_1.tif (3107040 bytes)
Figura 5.1 - Marcação de coordenadas geográficas
1.2 - COORDENADAS PLANIMÉTRICAS
O procedimento para marcação de um ponto de coordenadas planas conhecidas é o mesmo utilizado para coordenadas geográficas.

Ex: Locar o ponto A, em uma carta na escala 1:50.000, cujas coordenadas planimétricas são:
        N = 7.368.700 m
A
        E = 351.750m

1º) Marcação da Coordenada N:

Para marcarmos a coordenada N, as linhas do grid em questão são as de valores 7.368.000m e 7.370.000m representados na carta por 7368 e 7370, respectivamente.

O intervalo entre as linhas do grid é de 2.000m. Se usarmos uma distância gráfica de 10 cm (100 mm), a cada 1 mm corresponderão 20 m, sendo este o erro máximo que poderá ser cometido. Estabelecemos uma relação entre o intervalo de 2.000 m (distância real no terreno) e a distância gráfica estabelecida:

    100 mm ---------- 2000 m
                                            Þ        x = 20 m
    1 mm   ------------ x

Ou seja, a cada 1 mm na régua, correspondem 20 m no terreno.

Já temos na carta a linha do grid de valor 7.368.000m ( 7368 ), precisamos portanto acrescentar 700m para a coordenada dada.

                1mm ----------- 20m
                                                                                         Þ         Logo, x = 35 mm
                    x ------------ 700m

Medimos 35 mm na carta, dentro do intervalo entre as linhas do grid, partindo da menor para a maior coordenada, ou seja, 7368 para 7370 e marcamos um ponto, traçando a seguir uma reta horizontal passando por este ponto. (Figura 5.2).

2º) Marcação da Coordenada E:

As linhas do grid em questão são as de valores 350.000 m e 352.000 m cujos valores na carta são representados por 350 e 352 respectivamente.

Assim como no caso da coordenada N, encontraremos os mesmos valores de intervalo entre as linhas do grid e a distância gráfica entre elas, portanto a relação é a mesma, ou seja, a cada 1 mm correspondem 20 m.

Na carta já temos a linha do grid de valor 350.000 m (350), portanto, para a coordenada do ponto precisamos acrescentar 1750 m.

                        1mm ---------- 20m
                                                                                    Þ          Logo, x = 87,5 mm
                             x ------------ 1750m

Medimos 87,5 mm na carta, dentro do intervalo entre as linhas do grid, partindo da menor para a maior coordenada, ou seja, de 350 para 352 e marcamos um ponto, traçando a seguir uma reta vertical passando por este ponto.

No cruzamento entre as duas retas traçadas estará localizado o ponto A desejado, determinado pelas coordenadas dadas. (Figura 5.2).

5_2.tif (3399432 bytes)
Figura 5.2 - Marcação do ponto A através das suas coordenadas UTM.
Para lermos as coordenadas (geográficas ou planimétricas) de um ponto qualquer em uma carta ou mapa, o processo é o mesmo, apenas, ao contrário de acharmos a medida em milímetros para marcamos na carta, mediremos a distância da referência (linhas do grid ou paralelos e meridianos) até o ponto desejado e calcularemos em metros ou graus, minutos e segundos obtendo assim as coordenadas desejadas.

1.3 - ALTITUDE DE UM PONTO NA CARTA
5_3.tif (32760 bytes)
                                                     
Altura do ponto P: H P = 500m + PD ( D h )

Triângulos Semelhantes: D APD ~ D ABC

                                                                          
        PD         BC                                            AD                                   
       -------   =  -----                  ==>          PD =  ------   x   BC
        AD         AC                                            AC

             
Onde BC = Eqüidistância Vertical


1.4 - DECLIVIDADE 
Declividade é a relação entre a diferença de altura entre dois pontos e a distância horizontal entre esses pontos.
5_4.tif (11848 bytes)
dh = Diferença de altura BC (Eqüidistância vertical)

dH = Distância horizontal AC (distância entre os pontos)

Assim,
                                                dh
Declividade (D) é a relação :              
                                                dH

A tg expressa o coeficiente angular de uma reta em relação ao eixo das abcissas

            dh
tg a =       
            dH

Para expressarmos a declividade em graus:

            dh
arc tg             = a = D
            dH

Quando expressamos em percentual a declividade de uma inclinação:

                                  dh
Rampa = tg a x 100 =           x 100
                                  dH
Noções Básicas de Cartografia
BIBLIOGRAFIA
ANDERSON, PAUL S.  Fundamentos para Fotointerpretação - SBC - 1982

ANDRADE, DINARTE F. P. NUNES - Fotogrametria Básica IME, - 1988

ANDRADE, LUÍS ANTONIO DE. - Proposta Metodológica para a Confecção de Carta-Imagem de Satélite. Artigo da Quadricon Com. e Rep. LTDA

Apostila Introdução á Geodésia - Fundação IBGE, 1997

BANKER, MUCIO PIRAGIBE RIBEIRO DE. Cartografia Noções Básicas DHN, 1965.

Brasil em números, Rio de Janeiro, V.3, p.1 - 1994.

BERALDO, PRIMO/SOARES, SERGIO MONTEIRO -GPS. Introdução e Aplicações Práticas.   Brasília, 1995.

Cartografia e Aerolevantamento-Legislação - COCAR, 1981

COELHO, ARNALDO GUIDO DE SOUZA, Uso Potencial dos sensores Remotos. Revista Brasileira de Cartografia. n. 10.

Especificações e Normas Gerais para Levantamentos Geodésicos (Coletânea das Normas Vigentes), Fundação IBGE - 1996

GARCIA, GILBERTO J. Sensoriamento Remoto, Princípios e Interpretação de Imagens, Ed. Nobel, 1982.

Imagens ERTS... Suas possibilidades, Fundação IBGE, 1974.

LIMA, MARIO IVAN CARDOSO DE.  Manuais Técnicos em Geociências n. 3 - Introdução à Interpretação Radargeológica, IBGE - 1995.

Manual da Carta Internacional do Mundo ao Milionésimo - CIM - Fundação IBGE, 1993

Manual de Compilação de Cartas na esc. 1:250.000 ( minuta), Fundação IBGE, 1996

Manual Técnico de Noções Básicas de Cartografia - Fundação IBGE, 1989

Manual Técnico T 34-700 Convenções Cartográficas - Ministério do Exército, 1975

Manuais Técnicos em Geocîencias no 2 - Manual de Normas, Especificações e procedimentos Técnicos para a Carta Internacional do Mundo ao Milionésimo, Fundação IBGE, 1993.

Manuais Técnicos em Geocîencias no 3 - Introdução à Interpretação Radargeológica, Fundação IBGE, 1995.

Manuais Técnicos em Geociências no 5, Manual de Geomorfologia, Fundação IBGE, 1995

Manual do Instruendo - Arquivo Gráfico Municipal, Fundação IBGE, 1995

Manual Técnico - Restituição Fotogramétrica Ministério do Exército, 1976

MELLO, MAURO PEREIRA DE, Cadernos de Geociências n. 1, Fundação IBGE, 1988

NETO, GILBERTO CÂMARA. Perespectivas em Cartografia por Satélite no Brasil: 1985 a 1990, Revista Brasileira de Cartografia n. 41, 1987.
Notas de Noções Básicas de Cartografia - SBC, 1986

NOVO, EVLYN M.L. DE MORAES. Sensoriamento Remoto Princípios e Aplicações, Ed. E.Blücher, 1992.

OLIVEIRA, CÊURIO DE. Curso de Cartografia Moderna, Fundação IBGE, 1988

OLIVEIRA, CÊURIO DE. Dicionário de Cartografia, Fundação IBGE - 1988

OLIVEIRA, MARCO ANTONIO DE E ET ALLI, Metodologia de Atualização para Cartas e Mapas, Fundação IBGE.

RAISZ, ERWIN. Cartografia Geral - Rio de Janeiro, 1969.

VIADANA, MARIA ISABEL C. DE FREITAS. Artigo, Alguma Metodologia de Aplicação Cartográfica UNESP - Rio Claro, SP, 1993.



Noções Básicas de Cartografia
Av. Brasil, 15.671 - Bloco III B - Térreo - Parada de Lucas - Rio de Janeiro - RJ
Tel.: 391-7788 ramal 248 - CEP 21.241-051
© IBGE
EQUIPE TÉCNICA
Coordenação
Isabel de Fátima Teixeira Silva
Enga. Cartógrafa

Orientação e Revisão TécnicaAnna Lúcia Barreto de Freitas
Enga. Cartógrafa
Organização, Compilação e
Elaboração

Wolmar Gonçalves Magalhães
Engo. Cartógrafo

Colaboração
Moema José de Carvalho Augusto
Enga. Cartógrafa
Marco Antônio de Oliveira
Geógrafo e Geólogo







http://www.ibge.gov.br/home/geociencias/cartografia/manual_nocoes/indice.htm

Nenhum comentário:

Postar um comentário